365文库
登录
注册
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
清澈水眸梦言归人 上传于:2024-04-20
数据仓库技术在物流行业的应用 姓名:周湘黔 班级:09物流 学号:2009030810 前言 数据仓库就是面向主题的、集成的、相对稳定的、随时间不断变化(不同时间)的数据集合,用以支持经营管理中的决策制定过程、数据仓库中的数据面向主题,与传统数据库面向应用相对应。物流作为集订单处理、收货、存货、运输、仓储、装卸搬运、包装、流通加工、配送等于一体的社会活动,所包含的数据信息具有信息源点多、信息量大、信息动态性特别强、信息种类多等特点,传统的数据处理无法满足其需求,只有能对大量数据进行迅速反应的数据仓库技术才能促进物流行业的快速发展。 背景 随着90年代后期Internet 的兴起与飞速发展,我们进入了一个新的时代,大量的信息和数据,迎面而来,用科学的方法去整理数据,从而从不同视角对企业经营各方面信息的精确分析、准确判断,比以往更为迫切,实施商业行为的有效性也比以往更受关注。使用这些技术建设的信息系统我们称为数据仓库系统。随着数据仓库技术应用的不断深入,近几年数据仓库技术得到长足的发展。典型的数据仓库系统,比如:自动化仓库系统、经营分析系统,决策支持系统等等。也随着数据仓库系统带来的良好效果,各行各业的单位,已经能很好的接受“整合数据,从数据中找知识,运用数据知识、用数据说话”等新的关系到改良生产活动各环节、提高生产效率、发展生产力的理念 数据仓库是面向主题的、集成的、与时间相关的、不可修改的数据集合。这是数据仓库技术特征的定位。 数据仓库技术的信息特点 数据仓库DW(Data Ware- house)是一个面向主题、集成、随时间变化,但信息本身又相对稳定的数据集合,它用于对管理决策过程的支持。对于供应链上的物流信息,数据仓库内包含物流节点从过去某一时刻到目前的各个阶段记录的数据信息,并经加工、汇总和整理得到多层数据集。决策人员按所需目标信息为主题进行查询,可以对供应链节点运营 HYPERLINK "http://www.studa.net/fazhan/" 发展过程及趋势做出定量分析和预测。数据仓库中的信息相对稳定,插入和查询操作较多,修改和删除操作很少,目的是尽可能保留原始第一时间内所获得的既定分类数据间的关联性。 数据仓库的技术结构 (一)数据源 是据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于RDBMS中的各种业务处理数据和各类文档数据。外部信息包括各类法律法规、市场信息和竞争对手的信息等等; (二)数据的存储与管理 是整个数据仓库系统的核心。数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。针对现有各业务系统的数据,进行抽取、清理,并有效集成按照主题进行组织。数据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。 (三)OLAP(联机分析处理)服务器 对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:ROLAP(关系型在线分析处理)、MOLAP(多维在线分析处理)和HOLAP(混合型线上分析处理)。 (四)前端工具 主要包括各种报表工具、查询工具、数据分析工具、数据挖掘工具以数据挖掘及各种基于数据仓库或数据集市的应用开发工具。其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具主要针对数据仓库。 建立数据仓库的原因 企业建立数据仓库是为了填补现有数据存储形式已经不能满足信息分析的需要。数据仓库理论中的一个核心理念就是:事务型数据和决策支持型数据的处理性能不同。 企业在它们的事务操作收集数据。在企业运作过程中:随着定货、销售记录的进行,这些事务型数据也连续的产生。为了引入数据,我们必须优化事务型数据库。 数据仓库的解决方法包括:将决策支持型数据处理从事务型数据处理中分离出来。数据按照一定的周期(通常在每晚或者每周末),从事务型数据库中导入决策支持型数据库——即“数据仓库”。数据仓库是按回答企业某方面的问题来分“主题”组织数据的,这是最有效的数据组织方式。 数据仓库技术在物流行业的应用 在物流领域建立数据仓库主要实现对物流服务需求分析、物流成本分析和物流过程分析,这主要以分析实时数据为主,将数据在供应链上按需重组,辅助决策者获取与目标相关的信息。 物流信息数据采集 信息数据采集是一个动态过程,物流作业中产生的信息经过一系列的数据加工才最终被存放在数据仓库中。最前端为物流基础作业信息源,包括物流基础作业和增值服务作业的数据信息,也包括HTML文件,知识库等各种信息。信息首先经过包装器/监视器,包装器负责把信息从信息源的数据格式转换成数据仓库的数据格式和数据模型,加工形成可以多维分析的数据:监视器负责自动监测信息源中数据变化,并把这些变化传递给集成器;集成器对收到的信息进行过滤、提取和合并处理,然后再存放在数据仓库中。 物流管理信息系统平台开发 由数据仓库支持的物流信息系统平台能够满足管理人员的决策需要,能快速响应其对信息数据的多维查询和分析的需要。物流企业管理信息系统平台建设中数据仓库与应用程序同步开发过程。企业所从事的物流作业环节;数据模型展示支持业务过程所需的数据;过程描述是统一规范定义企业具体的业务过程,形成书面标准格式,数据描述是规定信息数据的格式、种类、时间等数据属性,建立数据信息的维度。在完成详细的过程描述和数据描述后,一部分工作是按照数据描述开发数据仓库的层次结构,另一部分是编译业务过程描述,开发系统平台的应用程序,以实现管理人员对物流信息系统的交互式操作。 物流决策支持子系统 建立物流管理信息系统是为 HYPERLINK "http://www.studa.net/company/" 企业进行物流管理与决策服务,决策支持系统是其中的一个子系统。决策支持系统由人机交互子系统、数据仓库管理子系统和模型库管理子系统组成,人机交互子系统实现控制数学模型和数据处理模型的结合与运行:模型库管理子系统负责建立、存放、删除、检索、统计、维护和管理有关模型,并负责模型与数据仓
tj