2020高考数学选择、填空题,高考考情与考点预测
高考数学历年考点框架
理科数学每年必考知识点:
复数、程序框图、三视图、函数与导数、三角函数、圆锥曲线、球的组合体、(计数原理、概率与统计模块)等。
理科数学每年常考的知识点:
常用逻辑用语、集合、线性规划、数列、平面向量、解三角形、定积分、直线与圆等。
最后冲刺指导(14个专题)
1、集合与常用逻辑用语小题
(1)集合小题
历年考情:
针对该考点,近9年高考都以交并补子运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题小组对集合题进行大幅变动的决心不大。
常见集合元素限定条件;对数不等式、指数不等式、分式不等式、一元二次不等式、绝对值不等式、对数函数的定义域、二次根式、、点集(直线、圆、方程组的解);补集、交集和并集;不等式问题画数轴很重要;指数形式永远大于0不要忽记;特别注意代表元素的字母是还是。
2020高考预测:
(2)常用逻辑用语小题
历年考情:
9 年高考中2017 年在复数题中涉及真命题这个概念.这个考点包含的小考点较多,并且容易与函数,不等式、数列、三角函数、立体几何交汇,热点就是“充要条件”;难点:否定与否命题;冷点:全称与特称(2015 考的冷点),思想:逆否.要注意,这类题可以分为两大类,一类只涉及形式的变换,比较简单,另一类涉及命题真假判断,比较复杂。
简单叙述:小范围是大范围的充分不必要;大范围是小范围的必要不充分。
2020高考预测:
2、复数小题
历年考情:
9 年 高考,每年 1 题,考查四则运算为主,偶尔与其他知识交汇,难度较小.考查代数运算的同时,主要涉及考查概念有:实部、虚部、共轭复数、复数的模、对应复平面的点坐标、复数运算等。
无法直接计算时可以先设z=a+bi
2020高考预测:
3、平面向量小题
历年考情:
2020高考预测:
4、线性规划小题
历年考情:
9 年高考,全国卷线性规划题考的比较基础,一般不与其它知识结合,不象部分省区的高考向量题侧重于与其它知识交汇,如和平面向量、基本不等式、解析几何等交汇.这种组合式交汇意义不大,不利于考查基本功.由于线性规划的运算量相对较大,难度不宜太大,不过为了避免很多同学解出交点代入的情况估计会加大“形’的考察力度,有可能通过目标函数的最值作为条件反求可行域内的参数问题,或者利用一些含有几何意义的目标函数(斜率、距离等), 如 2015 年新课标 15 题。平移目标函数最准确
三大常见考法:截距型、斜率型、距离型;斜率型注意范围是取中间还是取两边;距离型最小值注意是点点距离最小还是点线距离最小。
含参问题包括约束条件含参和目标函数含参,注意动变静、动静结合;面积问题。
2020高考预测:
5、三角函数小题
历年考情:
9 年高考,每年至少 1 题.题目难度较小,主要考察公式熟练运用、平移、图像性质、化简求值、解三角形等问题(含应用题),基本属于“送分题”.小心平移(重点+难点+几乎年年考).2013 年 15题对化简要求较高,难度较大2016年和2018年的考法也是比较难的,所以当了压轴题。2019年选择题2道题涉及三角函数,主要考查三角函数的图像性质。
2020高考预测:
6、立体几何小题
历年考情:
9 年高考,一般考三视图和球,主要计算体积和表面积.其中,我认为“点线面”也有可能出现在小题,但是难度不大,立体几何是否会与其它知识交汇?如:几何概型?有可能.但是,根据全国卷的命题习惯,交汇可能性不大.除2019年外,年年考三视图,是否也太稳定了吧?球体是基本的几何体,是发展空间想象能力的很好载体,是新课标的热点,但有时难度较大。
三视图要学会在长方体或正方体或直棱柱等特殊几何体中截取,对某些棱不确定时多尝试进而验证;要牢记三棱锥、三棱柱、圆柱、圆锥、长方体、正方体、球等常见图形的三视图,多联想;
可以补形为长方体或正方体时候,按照长方体或正方体外接球解决比较简单;直三棱柱或正三棱柱也是这样;其他无法补形的几何体外接球球心找法:从两个面(尽量是等边、等腰、直角等特殊的面)的外心作面的垂线,两条垂线的交点就是球心,然后要在两条垂线构成的平面中解决问题。
2020高考预测:
7、推理证明小题
历年考情:
9 年高考,这不是常规的数学考法,倒是很像一道公务员考试的逻辑推理题,但这是个信号,2016 年和 2017 年全国Ⅱ卷又连续两次考。
8、概率小题
历年考情:
9 年高考,2013 年没考小题,但是在大题中考了.主要考古典概型、几何概型和相互独立事件的概率。
长度型、面积型、体积型、角度型
2020高考预测:
9、统计小题
历年考情:
9 年高考,只在 2013 年和 2018 年考了统计小题.统计一般放在大题考,这个考点内容实在太多:频率分布表、直方图、抽样方法、样本平均数、方差、标准差、散点图、回归分析、独立性检验等。
正相关、