专升本入学考试数学考试大纲
考试形式和试卷结构
一、答题方式
答题方式为:闭卷、笔试.
二、试卷题型结构
试卷题型结构为:单选题、填空题、解答题:
三、参考书籍
高等数学(上、下册)(第二版) 常迎香 主编 科学出版社
专升本入学考试数学考试大纲
一 函数、极限、连续
考试内容
函数的概念及表示法:函数的有界性 单调性 周期性和奇偶性 复合函数 反函数分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质:函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1、理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系.
2、了解函数的有界性、单调性、周期性和奇偶性.
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4、掌握基本初等函数的性质及其图形,了解初等函数的概念.
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6、掌握极限的性质及四则运算法则.
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
二 一元函数微分学
考试内容
导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数 反函数 隐函数以及参数方程所确定的函数的导数 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数的最大值和最小值 函数图形的凹凸性 拐点及渐近线 函数图形的描绘
考试要求
1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3、了解高阶导数的概念,会求简单函数的高阶导数.
4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5、理解并会使用罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理.
6、掌握用洛必达法则求未定式极限的方法.
7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
8、会用导数判断函数图形的凹凸性、会求函数图形的拐点以及水平、铅直渐近线,会描绘函数的图形.
三 一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常积分 定积分的应用
考试要求
1、理解原函数的概念,理解不定积分和定积分的概念.
2、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3、会求有理函数,三角函数有理式和简单无理函数的积分.
4、理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5、了解反常积分的概念,会计算反常积分.
6、掌握利用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积、平行截面面积为已知的立体体积等)及函数的平均值.
四 向量代数和空间解析几何
考试内容
向量的概念 向量的线性运算 向量的数量积和向量积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向余弦 曲面方程和空间曲线方程的概念 平面方程 直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 球面 柱面 旋转曲面等常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
考试要求
1、理解空间直角坐标系,理解向量的概念及其表示.
2、掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平行的条件.
3、理解单位向量、方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4、掌握平面方程和直线方程及其求法.
5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6、