365文库
登录
注册
2

基于GSM网络远程测量系统的设计.doc

309阅读 | 11收藏 | 8页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
基于GSM网络远程测量系统的设计.doc第1页
基于GSM网络远程测量系统的设计.doc第2页
基于GSM网络远程测量系统的设计.doc第3页
基于GSM网络远程测量系统的设计.doc第4页
基于GSM网络远程测量系统的设计.doc第5页
基于GSM网络远程测量系统的设计.doc第6页
基于GSM网络远程测量系统的设计.doc第7页
基于GSM网络远程测量系统的设计.doc第8页
福利来袭,限时免费在线编辑
转Pdf
right
1/8
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
素墨染尽流年逝 上传于:2024-06-18
基于GSM网络远程测量系统的设计 0 绪论 (5)基于无线通信的远程测控系统 对于工作点多、通信距离远、环境恶劣且实时性和可靠性要求比较高的场合,可以利用无线电波来实现主控站与各个子站之间的数据通信,采用这种远程测控方式有利于解决复杂连线,无需铺设电缆或光缆,降低了环境成本。这种远程测控系统的关键是要使射频模块的接收灵敏度和发射功率足够高(可以采用专业无线电台来替代射频模块),以扩大站点间的距离,同时还需要考虑无线电波波段的选择;无线通信调制解调器已经有许多比较成熟的产品,可以根据实际需要来选择。基于无线通信的远程测控技术的应用领域十分广泛,比如说智能小区的保安系统、油井远程监测系统等均可以采用这种技术来实现,还有航空航天上使用的无线电跟踪测轨、遥测、遥控系统,是这种技术的典型应用。 1系统总体设计 1.1系统功能 (1)实时采集温度:当温度超过某一警戒值时报警 (2)发送短信:当温度超过某一警戒值时,模块向手机发送短信 (3)接收短信:用户接收到报警后,向模块发送短信,使风扇工作,降低温度 1.2系统设计方案论证与选择 1.2.1温度传感器的设计方案论证与选择 方案一:热电偶和热电阻测出的一般都是电压,要再经过采样/保持电路进行A/D转换,最终送入单片机再转换成对应的温度。这需要比较多的外部硬件支持,易受干扰、精度低、硬件电路复杂,需要复杂的软件调试补偿精度,制作成本高。 方案二:选择DS18B20作为温度传感检测元件,它不仅测温范围宽(-55~125℃),而且最大分辨达0.0625℃,同时与单片机相连采用3线制,可直接读出被测温度值。减少了外部的硬件电路,具有低成本和易使用的特点。 从上面两个方案的比较中可以看出方案二比较好。 1.2.2与GSM比较GPRS有何技术优势? GPRS是在GSM基础上发展起来的一种分组交换的数据承载和传输方式,与原有的GSM比较,GPRS在数据业务的承载和支持上具有非常明显的优势:更有效的利用无线网络信道资源,特别适合突发性、频繁的小流量数据传输;支持的数据传输的速率更高,理论峰值达115kbps;计费方式更加灵活,可以支持按数据流量来进行计费;GPRS还能支持在进行数据传输的同时进行语音通话等等。 1.2.3 GSM模块的选择 目前,国内已经开始使用的GSM模块有Falcom的A2D系列、Wavecome的WMO2系列、西门子的TC35系列、爱立信的DM10/DM20系列、中兴的ZXGM18系列等,而且这些模块的功能、用法差别不大。其中西门子的TC35系列模块性价比很高,并且已经有国内的无线电设备入网证。所以本设计选用的是西门子TC35,该模块设计紧凑,大大缩小了用户产品的体积。该模块集射频电路和基带于一体,向用户提供标准的AT命令接口,为数据、语音、短消息和传真提供快速、可靠、安全的传输,方便用户的应用开发及设计。 1.3系统设计框图 系统的硬件电路部分包括天线、CPU、GSM模块、SLIC厚膜电路、电源和馈电输出系统。CPU采用单片机AT89C52,具有使用方便,抗干扰性好等特点。GSM模块采用西门子公司的TC35工业控制模块,来完成语音及数据通信,它提供的AT指令接口由CPU控制该模块工作,如图1.1所示。  图1.1 系统设计框图 2系统硬件设计 2.1系统构成 系统分为监测中心站和远程监测分站两部分:监测中心站主要由监测中心站服务器、GSM无线通信模块、数据库系统及其应用软件组成;远程监测分站主要由AT89C52单片机及外围电路、温度传感器和GSM无线通信模块(TC35)组成。监测中心控制GSM无线通信模块收发短消息,接收各监测分站采集的温度数据,然后对数据进行显示、处理和打印等。远程监测分站实现温度数据的采集、处理和显示。同时控制GSM无线通信模块收发短消息。监测中心站与远程监测分站之间通过GSM网络实现无线远程通信。实现了基于GSM网络的远程监测系统。系统总体结构如图2.1所示。    图2.1 系统总体结构 2.2单片机外围电路设计  该系统的MCU采用ATMEL公司生产的AT89C52单片机。它是一种低电压、低功耗、高性能的CMOS 8位单片机,片内含8 kB可反复擦写的程序存储器和256 B的数据存储器。本设计用的单片机结构简单,外围电路除了包括单片机正常工作所必须的元件外,只有8个发光二极管,用以检测命令 2.3温度检测电路 温度检测电路采用Dallas公司生产的数字温度传感器DSl8B20,它采用3引脚T0-92封装:温度测量范围为-55℃~+125℃.编程设置9~12位分辨率。现场温度直接以1-Wire的数字方式传输。大大提高了系统的抗干扰性。多个DSl8B20可并联至3或2根总线上.CPU只需1根端口线就能与多个DSl8820通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。主机控制DSl8820实现温度转换,DSl8820采用外接电源方式,其VDD端采用3 v~5.5 V电源供电。 3 GSM模块介绍 3.1 GSM模块概述 GSM全名为:Global System for Mobile Communications,中文为全球移动通讯系统,俗称"全球通",是一种起源于欧洲的移动通信技术标准,是第二代移动通信技术,其开发目的是让全球各地可以共同使用一个移动电话网络标准,让用户使用一部手机就能行遍全球。我国于20世纪90年代初引进采用此项技术标准,此前一直是采用蜂窝模拟移动技术,即第一代GSM技术(2001年12月31日我国关闭了模拟移动网络)。目前,中国移动、中国联通各拥有一个GSM网,为世界最大的移动通信网络。GSM系统包括 GSM 900:900MHz、GSM1800:1800MHz 及 GSM1900:1900MHz等几个频段 。GSM是一种广泛应用于欧洲及世界其他地方的数字移动电话系统。GSM使用的是时分多址的变体,并且它是目前三种数字无线电话技术(TDMA、GSM和CDMA)中使用最为广泛的一种。GSM将资料数字化,并将数据进行压缩,然后与其它的两个用户数据流一起从信道发送出去,另外的两个用户数据流都有各自的时隙。GSM实际上是欧洲的无线电话标准,据GSM MoU联合委员会报道,GSM在全球有12亿的用户,并且用户遍布120多个国家。因为许多GSM网络操作员与其他国外操作员有漫游协议,因此当用户到其他国家之后,仍然可以继续使用他们的移动电话。 3.2 GSM系统组成 GSM通信系统主要由移动交换子系统(MSS)、基站子系统(BSS)和移动台(MS)三大部分组成,如图3.1所示。其中MSS与BSS之间的接口为A接口,BSS与MS之间的接口为Um接口。GSM规范对系统的A接口和Um接口都有明确的规定,也就是说,A接口和Um接口是开放的接口。  图3.1 GSM系统组成 (1)移动交换子系统MSS     完成信息交换、用户信息管理、呼叫接续、号码管理等功能。 (2)基站子系统BSS     BSS系统是在一定的无线覆盖区中由MSC控制,与MS进行通信的系统设备,完成信道的分配、用户的接入和寻呼、信息的传送等功能。 (3)移动台MS   MS是GSM系统的移动用户设备,它由两部分组成,移动终端和客户识别卡(SIM卡)。移动终端就是“机”,它可完成话音编码、信道编码、信息加密、信息的调制和解调、信息发射和接收。SIM卡就是“人”,它类似于我们现在所用的IC卡,因此也称作智能卡,存有认证客户身份所需的所有信息,并能执行一些与安全保密有关的重要信息,以防止非法客户进入网路。SIM卡还存储与网路和客户有关的管理数据,只有插入SIM卡后移动终端才能接入进网。 (4)操作维护子系统 GSM子系统还包括操作维护子系统(OMC),对整个GSM网络进行管理和监控。通过它实现对GSM网内各种部件功能的监视、状态报告、故障诊断等功能。 3.3 TC35通信模块 TC35是西门子最新推出的无线通信模块,该模块集射频电路和基带于一体,向用户提供标准的AT命令接口,为数据、语音和短消息提供快速、可靠、安全的传输,方便用户的应用开发及设计。 3.3.1 TC35的主要结构   TC35设计小巧、功耗很低,其主要由GSM基带处理器、GSM无线模块、电源模块(ASIC)、闪存、ZIF连接器、天线接口6部分组成。其框图如图3.2所示。  图3.2 TC35的组成框图 TC35有40个引脚,通过ZIF连接器引出。这些引脚可划分为5类,即电源、数据输入/输出、SIM卡、音频接口和控制。TC35外围电路图如图3.3所示。  图3.3 TC35外围电路图 1~14引脚为电源部分,其中l~5引脚为电源电压输入端,6~10引脚为电源地GND,11~12引脚为充电端,13引脚为对外输出电压(供外部电路使用),14引脚ACCU/TEMP接负温度系数的热敏电阻;24~29引脚为SIM卡连接端;33~40引脚为语音接口用来接电话手柄。15、30、31和32引脚为控制部分,15引脚为启动线IGT(Ignition)。当TC35i通电后必须给IGT一个大于100 mV的低电平,模块才能启动。30引脚为RTC BACK up;31引脚为掉电控制;32引脚为SYNC,16~23引脚为数据输入/输出端。 3.3.2 TC35主要特性 TC35的数据输入/输出接口实际上是一个串行异步收发器,符合ITU-T RS232接口标准。它有固定的参数:8位数据位和1位停止位,无校验位,波特率在300bps~115kbps之间可选,硬件握手信号用RTS0/CTS0,软件流量控制用XON/XOFF,CMOS电平,支持标准的AT命令集。传输速率可以在4.8kbit/s~115kbit/s间自适应。系统加电后,为使TC35进入工作状态,必须给IGT加一延时大于100ms的低脉冲,电平下降持续时间不超过1ms。启动后,IGT应保持高电平(3.3V)。在驱动IGT时,TC35模块的供电电压不能低于3.3V,否则TC35不能激活。   TC35模块是整个GSM系统的核心,它工作在EGSM900和GSM1800双频段,可传输语音和数据信号,功耗在EGSM900(4类)和GSM1800(1类)分别为2W和1W,通过接口连接器和天线连接器分别连接到SIM卡读卡器和天线。它支持文本和PDU格式的SMS(短消息),2.4k 、4.8k、9.6k的非透明数据和第3组的一类、二类传真。可通过AT命令或关断信号实现重启和故障恢复。TC35模块非常适合在最小功率下开发出GSM蜂窝设备,这蜂窝设备应用部分构成人机接口(MMI),通过单片机89C52的串行接口可接入TC35。TC35通过40芯ZIF连接蜂窝应用部分,ZIF连接器提供控制数据、音频信号和电源输入线的应用接口。   终端系统工作电压为5V。由于TC35模块的突发耗电电流峰值可达3A,故外加的稳压器件必须达到足以提供TC35额定电流的条件。   TC35数据接口工作在CMOS电平(2.65V),通过74LVC07芯片电平转换与单片机的串行口连接。数据接口遵从DCE的ITU-T  RS-232内部交换电路标准实现异步串行收发功能。ZIF连接器提供6个引脚给SIM卡接口,其中CCIN用来检测SIM卡是插好。连接器的SYNC脚控制灯的状态,以此判断TC35的工作状态。 电源电路分为充电电池和稳压电源模块两部分:充电电池主要为整个系统提供3.6V工作电压
tj