12.19 每帧电视图像可以认为是由3(105个像素组成的,所有像素均是独立变化,且每像素又取128个不同的亮度电平,并设亮度电平是等概出现,问每帧图像含有多少信息量?若有一个广播员,在约10000个汉字中选出1000个汉字来口述此电视图像,试问广播员描述此图像所广播的信息量是多少(假设汉字字汇是等概率分布,并彼此无依赖)?若要恰当的描述此图像,广播员在口述中至少需要多少汉字?
解:
1)
2)
3)
3.2 设二元对称信道的传递矩阵为
(1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y);
(2) 求该信道的信道容量及其达到信道容量时的输入概率分布;
解:
1)
2)
3.6 有一个二元对称信道,其信道矩阵为。设该信源以1500二元符号/秒的速度传输输入符号。现有一消息序列共有14000个二元符号,并设P(0) = P(1) = 1/2,问从消息传输的角度来考虑,10秒钟内能否将这消息序列无失真的传递完?
解:信道容量计算如下:
也就是说每输入一个信道符号,接收到的信息量是0.859比特。已知信源输入1500二元符号/秒,那么每秒钟接收到的信息量是:
现在需要传送的符号序列有140000个二元符号,并设P(0) = P(1) = 1/2,可以计算出这个符号序列的信息量是
要求10秒钟传完,也就是说每秒钟传输的信息量是1400bit/s,超过了信道每秒钟传输的能力(1288 bit/s)。所以10秒内不能将消息序列无失真的传递完。
3.14 试求以下各信道矩阵代表的信道的容量:
(1) [P] = (2) [P] = (3)[P]=
解:1)这个信道是一一对应的无干扰信道
2)这个信道是归并的无干扰信道
EMBED Equation.3
3)这个信道是扩展的无干扰信道
EMBED Equation.3
5.1 设信源EMBED Equation.3
(1) 求信源熵H(X);
(2) 编二进制香农码;
(3) 计算平均码长和编码效率。
解:(1)
(2)
xi
p(xi)
pa(xi)
ki
码字
x1
0.2
0
3
000
x2
0.19
0.2
3
001
x3
0.18
0.39
3
011
x4
0.17
0.57
3
100
x5
0.15
0.74
3
101
x6
0.1
0.89
4
1110
x7
0.01
0.99
7
1111110
(3)
5.3 对信源编二进制和三进制哈夫曼码,计