365文库
登录
注册
2

基于WiFi无线通信系统在高速铁路中的应用.docx

89阅读 | 4收藏 | 7页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
基于WiFi无线通信系统在高速铁路中的应用.docx第1页
基于WiFi无线通信系统在高速铁路中的应用.docx第2页
基于WiFi无线通信系统在高速铁路中的应用.docx第3页
基于WiFi无线通信系统在高速铁路中的应用.docx第4页
基于WiFi无线通信系统在高速铁路中的应用.docx第5页
基于WiFi无线通信系统在高速铁路中的应用.docx第6页
基于WiFi无线通信系统在高速铁路中的应用.docx第7页
福利来袭,限时免费在线编辑
转Pdf
right
1/7
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
寻欢作乐 上传于:2024-06-14
基于WiFi无线通信系统在高速铁路中的应用 基于WiFi无线通信系统在高速铁路中的应用 蓝 博 (桂林电子科技大学,广西 桂林 541004) 【摘 要】针对高速铁路无线通信系统数据交换速度缓慢的问题,给出一种可用于实际的无线WiFi通信系统。该系统以智能天线和无线收发设备为基础,通过分割移动IP在链路层(L2HO)及网络层(L3HO)切换的时间点,从而避免传统无线通信在切换时间点重合时所出现的通信中断问题。由于采用WiFi网络连接,故能提供相对于传统移动网络更为流畅的用户体验效果,可较好的满足用户日益增长的网络带宽需求。 关键词 高速铁路;WiFi;无线通信 Application of Wireless Communication System Based on WiFi in The High Speed Railway LAN Bo (Guilin University of Electronic Technology, Guilin Guangxi 541004, China) 【Abstract】The traditional high-speed railway communication systems met a lowly data exchange problem, this paper proposed a WiFi based wireless communication system. The system used smart antenna and the radio equipment, through separating the mobile IP handovers time in the data link layer (L2HO) and the network layer (L3HO) to avoid fatal communication disruption in the conventional wireless communication. This WiFi based network connection can provide better internet experience compared with traditional mobile network, also can met the growing demand for bandwidth of customers. 【Key words】High-speed rail; WiFi; Wireless communication 高速铁路最大特点是高速运行在200km/h以上的速度区间内,国内最高曾达到过486.1km/h。在其快速运行过程中会出现基站信道迅速、频繁的切换,以及多普勒效应的产生,这会导致列车上无线数据交换速度缓慢、通话不连续甚至中断等问题。在高铁全速运行时要保持与外界的通话和数据交换,需要新的通信机制的产生及高速前提下新一代铁路移动通信系统的研发。现有的针对措施主要包括:增大基站发射频率及密度,但这将导致运营成本的迅速增加;另外可设置车载转发系统或对现有通信制式及算法进行有针对性的优化。后者由于其可行性较高,已逐渐成为高铁无线通信的研究重点。 1系统结构 早在2009年日本新干线高铁线路即采用沿途泄露电缆铺设的方式实现了高铁车厢中无线信号的覆盖,最高可实现2Mbps的下载速度。但是随着智能设备的普及,用户对于高铁无线接入有了更高的需求。WiFi接入可有效减少铁路沿线基站运营成本,但另一方面由于无线桥接的覆盖范围较小,且车厢高速运行会在无线链路层(二层)和网络层(三层)间做频繁的切换,这两种切换一旦同时发生将导致通讯的暂时中止,故在高速运行环境下的保证通信质量是非常困难的。本文给出了一个基于WiFi的高铁无线数据交换系统,其最大特点为能够利用WiFi接入实现最大16Mbps的UDP数据包吞吐量。 该实验系统主要包括以下部分:1)智能天线部署;2)行车区间WiFi信号覆盖及优化;3)支持无线链路层快速切换的无线网桥;4)高速移动IP切换网络。 1.1智能天线的部署 每节车厢在轨道上的轨迹都是一致的,这可以使得车载天线能够与地面对应的天线良好的对接。从而当列车通过天线阵列时,在存在多普勒频移的条件下能够保证良好的无线通信条件。在该过程中充分利用智能天线良好的自适应指向特点,使之能够有效的覆盖列车轨道范围。结合实际应用所设计的智能天线满足11.5dBi的方向性增益及40度左右的半值角。 1.2WiFi桥接及地面天线部署 在该实验系统中共包含11个地面WiFi无线桥接,由于各个天线所发射的信号方向与铁轨互相平行,且接收信号强度指标(RSSI)会随着天线间距增大而降低,故在系统中每两个无线桥接间间距大约为500m。图1所示为地面天线安装在距离临近天线点的RSSI强度约为-85dBm(变化范围为从-87.2dBm到-81.2dBm)的位置,这其中包含车厢箱体所引致的8.3dB的穿透衰减。此时的最大菲涅尔半径为:r= 考虑到地面以及车载天线本身具有一定的高度,所以在我们的试验中使用更为严苛的半径条件。 1.3WiFi桥接及车载天线 在驾驶员车厢中也同样安装了WiFi桥接设备及智能天线。在本测试系统中考虑列车车厢的屏蔽作用,将其量化为箱体及挡风玻璃会引致8.3dB左右的衰减。图2所示为车载天线及地面天线的物理关系示意。 1.4使用移动IPv4地址进行网络配置 采用IP路由协议进行移动IPv4地址的网络配置如图3所示。其中HA表示本地代理,FA表示外部代理。图中共包含了一个本地代理和三个外部代理,皆部署在同一个网段下,每个FA下面部署有3-4个WiFi无线网桥设备。同时为完成网络层切换(L3HO)的性能测试,在试验中将系统划分为3个外部代理子网络,从每个外部代理过来的路由器请求报文间隔时间设置为3-6s。网络中WiFi无线网桥设备采用串联形式通过2层的交换机进行连接。移动路由(即图中MR)和WiFi无线桥接安装在列车上,系统所使用的三层设备都需要支持移动IPv4(即PFC3344
tj