小升初奥数32个知识点
1.和差倍问题
和差问题和倍问题 差倍问题
已知条件几个数的和与差,几个数的和与倍数几个数的差与倍数
公式适用范围 已知两个数的和,差,倍数关系
公式 ①(和-差)÷2=较小数 较小数+差=较大数 和-较小数=较大数
公式②(和+差)÷2=较大数 较大数-差=较小数 和-较大数=较小数
和÷(倍数+1)=小数 小数×倍数=大数 和-小数=大数 差÷(倍数-1)=小数
小数×倍数=大数 小数+差=大数
关键问题:求出同一条件下的和与差 和与倍数 差与倍数
2.年龄问题的三个基本特征:
①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的;
③两个人的年龄的倍数是发生变化的;
3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示.关键问题:根据题目中的条件确定并求出单一量;
4.植树问题
基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树
基本公式 棵数=段数+1
棵距×段数=总长棵数=段数-1
棵距×段数=总长棵数=段数
棵距×段数=总长
关键问题 确定所属类型,从而确定棵数与段数的关系
5.鸡兔同笼问题
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差.
基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)
关键问题:找出总量的差与单位量的差.
6.盈亏问题
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.
基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:对象总量和总的组数是不变的.
关键问题:确定对象总量和总的组数.
7.牛吃草问题
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量.
基本特点:原草量和新草生长速度是不变的;
关键问题:确定两个不变的量.
基本公式:
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;
8.周期循环与数表规律
周期现象:事物在运动变化的过程中,某些特征有规律循环出现.
周期:我们把连续两次出现所经过的时间叫周期.
关键问题:确定循环周期.
闰 年:一年有366天;
①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;
平 年:一年有365天.
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
9.平均数
基本公式:①平均数=总数量÷总份数 数量=平均数×总份数 总份数=总数量÷平均数
②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
①求出总数量以及总份数,利用基本公式①进行计算.
②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②.
10.抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体.
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体.
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m]+1个物体:当n不能被m整除时.
②k=n/m个物体:当n能被m整除时.
理解知识点:[X]表示不超过X的最大整数.
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉.也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算.
12.数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列.
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示.
基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个.
13.定义新运算
基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算.
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算.
关键问题:正确理解定义的运算符号的意义.
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序.
②每个新定义的运算符号只能在本题中使用.
14.数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列.
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示.
基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个.
基本公式:通项公式:an = a1+(n-1)d;
通项=首项+(项数一1) 公差;
数列和公式:sn,=(a1+ an)n2;
数列和=(首项+末项)项数2;
项数公式:n=(an+ a1)d+1;
项数=(末项-首项)公差+1;
公差公式:d =(an-a1))(n-1);
公差=(末项-首项)(项数-1);
关键问题:确定已知量和未知量,确定使用的公式;
15.二进制及其应用
十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200.所以234=200+30+4=2102+310+4.
=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+……+A3102+A2101+A1100
注意:N0=1;N1=N(其中N是任意自然数)
二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义.
(2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7+……+A322+A221+A120
注意:An不是0就是1.
十进制化成二进制:
①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可.
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出
16.加法乘法原理和几何计数
加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法.
关键问题:确定工作的分类方法.
基本特征:每一种方法都可完成任务.
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法.
关键问题:确定工作的完成步骤.
基本特征:每一步只能完成任务的一部分.
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹.
直线特点:没有端点,没有长度.
线段:直线上任意两点间的距离.这两点叫端点.
线段特点:有两个端点,有长度.
射线:把直线的一端无限延长.
射线特点:只有一个端点;没有长度.
①数线段规律:总数=1+2+3+…+(点数一1);
②数角规律=1+2+3+…+(射线数一1);
③数长方形规律:个数=长的线段数×宽的线段数:
④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数
17.质数与合数
质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数.
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数.
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数.
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数.通常用短除法分解质因数.任何一个合数分解质因数的结果是唯一的.
分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1