2013年国考行测真题及答案:数量关系
61、某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门。假设行政部门分得的毕业生人数比其他部门都多,问行政部分得的毕业生人数至少为多少名?
A.10
B.11
C.12
D.13
参考答案:B
本题解析:
62、阳光下,电线杆的影子投射在墙面及地面上,其中墙面部分的高度为1米,地面部分的长度为7米。甲某身高1.8米,同一时刻在地面形成的影子长0.9米。则该电线杆的高度为:
A.12米
B.14米
C.15米
D.16米
参考答案:C
本题解析:几何问题。由题意,真实长度与影子长度为2:1,墙上的影子长度投影到地上才是真实的影子长度,即影子总长为7+0.5=7.5米,电线杆高度为7.5×2=15米。
63、甲和乙进行打靶比赛,各打两发子弹,中靶数量多的人获胜。甲每发子弹中靶的概率是60%,而乙每发子弹中靶的概率是30%。则比赛中乙战胜甲的可能性:
A.小于5%B.在5%~12%之之间
C.在10%~15%之间
D.大于15%
参考答案:C
本题解析:概率问题。分类思想:(全概率公式)乙战胜甲的概率=乙中2×(甲中0+甲中1)+乙中1×(甲中0)=0.3×0.3×(0.4×0.4+2×0.6×0.4)+2×0.3×0.7×0.4×0.4=12.48%。
64、某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2部之和等于丙型产量7倍。则甲、乙、丙三型产量之比为:
A.5∶4∶3
B.4∶3∶2
C.4∶2∶1
D.3∶2∶1
参考答案:D
本题解析:数字特性思想,由3乙+6丙=4甲,得甲应为3的倍数。观察选项只有D项满足。
65、某种汉堡包每个成本4.5元,售价10.5元,当天卖不完的汉堡包即不再出售。在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个,问这十天该餐厅卖汉堡包共赚了多少元?
A.10850
B.10950
C.11050
D.11350
参考答案:B
本题解析:经济利润问题。解法二:总成本为4.5×200×10=9000元,总售价为10.5×200×6+10.5×4×175=19950元,故利润为10950元。解法三:总利润=6×(200×6+175×4)+(-4.5)×(25×4)=10950元。
66、某单位组织党员参加党史、党风康政建设、科学发展观和业务能力四项培训,要求每名党员参加且只参加其中的两项。无论如何安排,都有至少5名党员参加的培训完全相同。问该单位至少有多少名党员?( )
A.17
B.21
C.25www.360kao.com
D.29
参考答案:C
本题解析: HYPERLINK "http://www.360kao.com/a/4672_2.html"
67、某人银行账户今年底余额减去1500元后,正好比去年底余额减少了25%,去年底余额比前年底余额的120%少2000元.则此人银行账户今年底余额一定比前年底余额( )。
A.少10%
B.多10%
C.少1000元
D.多1000元
参考答案:A
本题解析:设前年底余额为x元,则去年为(1.2x-2000)元,今年为[0.75×(1.2x-2000)+1500]元,化简得今年为0.9x元,即比前年底减少10%。
68、某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不问断的开采?(假定该河段河沙沉积的速度相对稳定)( )
A.25
B.30
C.35
D.40
参考答案:B
本题解析:牛吃草问题。由核心公式,设原有河沙量为y,每月新增河沙量为x,故y=(80-x)×6,y=(60-x)×10;解得x=30,y=300。即可供30人不间断开采。
69、书架的某一层上有136本书,且是按照“3本小说、4本教材、5本工具书、7本科技书,3本小说、4本教材……”的顺序循环从左至右排列的。问该层最右边的一本是什么书?( )
A.小说
B.教材
C.工具书
D.科技书
参考答案:A
本题解析:循环周期问题。3+4+5+7=19,136÷19=7……3,即7个周期多3本,即最右边一本为小说。
70、根据国务院办公厅部分节假日安排的通知,某年8月份有22个工作日,那么当年的8月1日可能是( )。
A.周一或周三B.周三或周日
C.周一或周四D.周四或周日
参考答案:D
本题解析:星期日期问题。由于8月为31天,若8月1日为周一,则容易看出一共会有23个工作日,故排除A、C;若8月1