高一物理必修1考核内容和要求及练习卷双向细目表
说明:本练习卷对必修1各知识点作四点要求
了解和认识:指了解、认识、描述、列举、识别、比较物理概念和规律。这些题目在A卷出现。
理解:指能与已有知识建立联系,能进行解释、推断、区分、扩展及收集和整理信息等。可按难易程度分别在A、B卷中出现。
应用:指能在新的情境中使用抽象的概念、原则;能进行总结、推广,建立不同情境下的合理联系。可按难易程度分别在A、B卷中出现。
实验:理解实验原理,能独立完成操作及测量,会数据收集与处理,尝试实验设计与创新。这些题目在B卷出现。
章 节
考核内容和要求
题型与题量
选择
填空
作图
计算
二
运动的描述
1、运动、空间和时间
参考系(A)
建立一维、二维坐标系描述空间位置(A)
时间和时刻(A)
1
1
2、质点和位移
质点(A)
位移和路程(B)
矢量和标量(A)
1
1
1
1
3、速度和加速度
平均速度和瞬时速度(B)
加速度(B)
匀速直线运动的位移图象(A)
匀速直线运动的速度图象(A)
1
2
1
1
三
匀变速直线运动的
研究
1、匀变速直线运动的规律
匀变速直线运动的特点(A)
匀变速直线运动的公式、规律(C)
匀变速直线运动的速度图象(B)
匀变速直线运动的位移图象(A)
3
2
1
2
1
2
3、自由落体运动
自由落体运动的特点(A)
自由落体运动的性质(A)
自由落体运动的公式、规律(C)
自由落体运动规律探索的回眸(B)
1
1
1
1
四
相互作用
1、重力与重心
力的图示与力的示意图(A)
重力及其测量,弹簧测力计读数(B)
重心和稳定(B)
1
1
1
1
2、形变与弹力
形变、弹性(A)
胡克定律(B)
弹力的应用(A)
1
1
1
1
3、摩擦力
滑动摩擦、动摩擦因数(B)
静摩擦(B)
摩擦力的调控(A)
1
1
1
五
力与平衡
1、力的合成
力的平行四边形定则(A)
合力的计算(B)
1
1
2、力的分解
力的作用效果及分解(B)
力的正交分解(B)
力的分解的应用(B)
1
1
1
1
3、力的平衡
共点力作用下的平衡条件(B)
平衡的种类和稳度(A)
1
1
4、平衡条件的应用
平衡条件的应用(C)
1
1
2
六力与运动
1、牛顿第一定律
伽利略的理想实验(A)
牛顿第一定律(B)
物体的惯性(A)
1
1
2、牛顿第二定律
牛顿第二定律及其应用(C)
力学单位制(A)
1
1
2
2
3、牛顿第三定律
牛顿第三定律(B)
1
4、超重与失重
超重和失重的解释(B)
完全失重现象(B)
2
1
1
实验与探究部分
内容
要求
说明
实验一:研究匀变速直线运动
1.用打点计时器、频闪照相或其他实验方法研究匀变速直线运动。
2.利用纸带会计算某点的瞬时速度和物体运动的加速度
3.经历匀变速直线运动的实验研究过程
1.要求会正确使用的仪器主要有:刻度尺、天平、电火花计时器或电磁打点计时器、弹簧秤等
2.要求认识误差问题在实验中的重要性,了解误差的概念,知道系统误差和偶然误差;知道用多次测量求平均值的方法减小偶然误差;能在某些实验中分析误差的主要来源;不要求计算误差
3.要求知道有效数字的概念,会用有效数字表达直接测量的结果。间接测量的有效数字运算不作要求
实验二:探究弹力和弹簧伸长的关系
通过实验,探究弹簧的形变与弹簧弹力之间的关系
会作F与x的关系图象,并用图象来求弹簧的劲度系数。
实验三:探究滑动摩擦力大小与物体间压力的关系
1、会用控制接触面粗糙程度相同来探究滑动摩擦力和压力的关系
2、理解课本实验装置探究滑动摩擦力的优点
实验四:验证力的平行四边形定则
通过实验验证力的平行四边形定则
实验五:实验探究,加速度与力、质量的关系
1.通过实验,探究加速度与物体质量、物体受力的关系
2、利用图象来探究加速度与质量、力的关系
【知识点详述】
第一章运动的描述
第一节认识运动
一、机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。
二、运动的特性:普遍性,永恒性,多样性
三、参考系
1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。
2.参考系的选取是自由的。
1)比较两个物体的运动必须选用同一参考系。
2)参照物不一定静止,但被认为是静止的。
四、质点
1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。
2.质点条件:
1)物体中各点的运动情况完全相同(物体做平动)
2)物体的大小(线度)<<它通过的距离
3.质点具有相对性,而不具有绝对性。
4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体)
第二节时间位移
一、时间与时刻
1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。△t=t2-t1
2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。
3.通常以问题中的初始时刻为零点。
二、路程和位移
1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。
2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。
3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。
4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。
第三节记录物体的运动信息
【打点记时器】 通过在纸带上打出一系列的点来记录物体运动信息的仪器。(电火花打点记时器,电磁打点记时器);一般打出两个相邻的点的时间间隔是0.02s。
第四节物体运动的速度
一、物体通过的路程与所用的时间之比叫做速度。
1、平均速度(与位移、时间间隔相对应)
物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。 v=s/t
2、瞬时速度(与位置时刻相对应)
瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。
思考:速率≥速度
第五节速度变化的快慢加速度
1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值 a=(vt-v0)/t
2.a不由△v、t决定,而是由F、m决定。
3.变化量=末态量值--初态量值……表示变化的大小或多少
4.变化率=变化量/时间……表示变化快慢
5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。
6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。
第六节用图象描述直线运动
一、匀变速直线运动的位移图象
1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)
2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同)
3.图象中两图线的交点表示两物体在这一时刻相遇。
二、匀变速直线运动的速度图象
1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)
2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。
第二章探究匀变速直线运动规律
第一、二节探究自由落体运动/自由落体运动规律
一、记录自由落体运动轨迹
1.物体仅在重力的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。
2.伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广。
自由落体运动规律
一、自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。g=9.8m/s 重力加速度g的方向总是竖直向下的。其大小随着纬度的增加而增加,随着高度的增加而减少。vt =2gs
二、竖直上抛运动
1.处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性)
1.速度公式:vt=v0—gt位移公式:h=v0t—gt /2
2.上升到最高点时间t=v0/g,上升到最高点所用时间与回落到抛出点所用时间相等
3.上升的最大高度:s=v0 /2g
第三节匀变速直线运动
一、匀变速直线运动规律
1.基本公式:s=v0t+at /2 2.平均速度:vt=v0+at
3.推论:1)v=vt/2 2)S2—S1=S3—S2=S4—S3=……=△S=aT
3)初速度为0的n个连续相等的时间内S之比: S1:S2:S3:……:Sn=1:3:5:……:(2n—1)
4)初速度为0的n个连续相等的位移内t之比:
t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)
5)a=(Sm—Sn)/(m—n)T (利用上各段位移,减少误差→逐差法)
6)vt —v0 =2as
第四节汽车行驶安全
1.停车距离=反应距离(车速 反应时间)+刹车距离(匀减速)
2.安全距离≥停车距离
3.刹车距离的大小取决于车的初速度和路面的粗糙程度
4.追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间及位移关系,临界状态(匀减速至静止)。可用图象法解题。
第三章研究物体间的相互作用
第一节探究形变与弹力的关系
一、认识形变
1.物体形状回体积发生变化简称形变。
2.分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。
按效果分:弹性形变、塑性形变
3.弹力有无的判断:1)定义法(产生条件)
2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。
二、弹性与弹性限度
1.物体具有恢复原状的性质称为弹性。
2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。
3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。
三、探究弹力
1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。
绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。 F=kx
4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。
5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2
第二节 摩擦力
一、滑动摩擦力
1.两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。
2.在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。
3.滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN
4.μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。
5.滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。
6.条件:直接接触、相互挤压(弹力),相对运动/趋势。
7.摩擦力的大小与接触面积无关,与相对运动速度无关。
8.摩擦力可以是阻力,也可以是动力。
9.计算:公式法/二力平衡法。
二、研究静摩擦力
1.当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。
2.物体所受到的静摩擦力有一个最大限度,这个最大值叫最大静摩擦力。
3.静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。
4.静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm
5.最大静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0 N(μ≤μ0)
6.静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。
第三节力的等效和替代
一、力的图示
1.力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。
2.图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比