七桥问题与一笔画
教学目标:
1、让学生体会用数学知识解决问题的方法。
2、通过其中抽象出点、线的过程,使学生对点、线有进一步的认识。
3、通过“一笔画”问题及其结论的了解,扩大学生知识视野,激发学生学习兴趣。
重点:运用“一笔画”的规律,快速正确地解决问题。
难点:探究“一笔画”的规律。
教学过程:
教学过程
一、展示问题引入新课
18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?
这就是数学史上著名的七桥问题,你愿意试一试吗?
二、分析:数学家欧拉知道了七桥问题他用四个点A、B、C、D分别表示小岛和岸,用七条线段表示七座桥(如图)于是问题就成为如何“一笔画”出图中的图形?
问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。如:
● ●
●
②有偶数条边相连的点叫偶点。如:
● ●
③一笔画指:1、下笔后笔尖不能离开纸。2、每条线都只能画一次而不能重复。
三、活动探究
下列图形中。请找出每个图的奇点个数,偶点个数。试一试哪些可以一笔画出,请填表,从中你能发现什么规律?
奇点个数
偶点个数
能否一笔画
图⑴
图⑵
图⑶
图⑷
图⑸
图⑹
图⑺
图⑻
图⑼
图⑽
图⑾
规律:①可以一笔画成的图形,与偶点个数无关,与奇点个数有关.其个数是0或2. = 2 \* GB3 ②其中若奇点个数为0,可选任一个点做起点,且一笔画后可以回到出发点。若奇点个数为2,可选其中一个奇点做起点,而终点一定是另一个奇点,即一笔画后不可以回到出发点。
用你发现的规律,说一说七桥问题的答案?
四、知识的拓宽与深化
在七桥问题中,如果允许再架一座桥,能否不重复地一次走遍这八座桥?这