六年级奥数题及答案:质因数【三篇】
导读:本文 六年级奥数题及答案:质因数【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】 1.质因数
某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?
【分析】这个学校最少有35+14×30=455名师生,最多有35+14×45=665名师生,并且师生总人数能整除1995.1995=3×5×133,在455~665之间的约数只有5×133=665,所以师生总数为665人,则平均每人捐款1995÷665=3元.
2.质因数
甲、乙、丙三人打靶,每人打三枪,三人各自中靶的环数之积都是 ,按个人中靶的总环数由高到低排,依次是甲、乙、丙。靶子上4环的那一枪是谁打的?(环数是不超过 的自然数) 【分析】三人三枪中靶环数之积均为60,即每人每枪中靶环数均为60的约数。将60分解质因数为60=22×3×5,又因为每枪环数不超过10,所以将60写成三个不超过10的自然数的乘积有且只有以下四种情况:
60=3×4×5;60=2×6×5;60=2×3×10;60=1×6×10.
其中总环数分别为12,13,15,17,出现4环的情形①总环数最少,所以4环是丙打的。 【第二篇】 质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是的。
分解质因数的标准表示形式:N= ,其中a1、a2、a3……an都是合数N的质因数,且a1 求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互质数:如果两个数的公约数是1,这两个数叫做互质数。 【第三篇】 质数、质因数和互质数这三个术语的概念极易混淆,因为它们都有“质”和“数”两个字。正确地区分这几个概念,对掌握数的整除性这部分基础知识,有着极其重要的意义。 (1)质数:一个自然数,如果只有1和它本身两个约数,这个数叫做质数(也称素数)。 例如: 1的约数有:1; 2的约数有:1,2; 3的约数有:1,3; 4的约数有:1,2,4; 6的约数有:1,2,3,6; 7的约数有:1,7; 12的约数有:1,2,3,4,6,12; …… 从上面各数的约数个数中可以看到:一个自然数的约数个数有三种情况: ①只有一个约数的,如1。因此,1不是质数,也不是合数。 ②只有两个约数的(1和它本身),如2,3,7…… ③有两个以上约数的,如4,6,12…… 属于第②种情况的,叫做质数。属于第③种情况的,即:除了1和本身以外,还有别的约数,这样的数叫做合数。 (2)质因数:一般地说,一个数的因数是质数,就叫做这个数的质因数。 例如:18=2×3×3 这里的2、3、3都是18的因数,而2和3本身又都是质数,于是我们就把2、3、3叫做18的质因数。这里需要