求最值的题目
1、利用轴对称变换求最小值
1)( 两定点一动点)在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?
2)、(一定点,两动点)、如图,矩形ABCD中,AB=20,BC=10,若在AB、AC上各取一点N、M,使得BM+MN的值最小,这个最小值为多少?
2、利用数形结合的思想求最小值
1)求函数的最小值
3、利用配方法求最小值
1)、(2003•温州)为了美化校园环境,某中学准备在一块空地(如图,矩形ABCD,AB=10m,BC=20m)上进行绿化.中间的一块(图中四边形EFGH)上种花,其他的四块(图中的四个Rt△)上铺设草坪,并要求AE=AH=CF=CG.那么在满足上述条件的所有设计中,是否存在一种设计,使得四边形EFGH(中间种花的一块)面积最大?若存在,请求出该设计中AE的长和四边形EFGH的面积;若不存在,请说明理由!
2)、为了美化社区环境,某小区准备对门口的一块矩形空地ABCD重新进行绿化,已知矩形的边长AB=10m,BC=20m,绿化方案如下:在矩形ABCD中间的一块四边形EFGH地面上种花,剩下的其它四块地面上铺设草坪,并要AH=CF=2AE=2CG.在满足上述条件的所有设计中,求出使四边形EFGH面积最大的AE的长和此时四边形EFGH的面积.
3). 如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B、E、C、G在一直线上。
(1) 若BE=a,求DH的长;
(2 ) 当E点在BC边上的什么位置时,△DHE的面积有最小值?求该三角形面积的最小值。
附:1、(应用题)、春季,我国云南、贵州等西南地区遇到多少年不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩.
(1)设甲种柴油发