初三总复习知识点总结------圆
1.垂径定理及推论:
如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理” “弧径定理”“中垂定理”.
几何表达式举例:
∵ CD过圆心
∵CD⊥AB
2.平行线夹弧定理:
圆的两条平行弦所夹的弧相等.
几何表达式举例:
3.“角、弦、弧、距”定理:(同圆或等圆中)
“等角对等弦”; “等弦对等角”;
“等角对等弧”; “等弧对等角”;
“等弧对等弦”;“等弦对等(优,劣)弧”;
“等弦对等弦心距”;“等弦心距对等弦”.
几何表达式举例:
(1) ∵∠AOB=∠COD
∴ AB = CD
(2) ∵ AB = CD
∴∠AOB=∠COD
4.圆周角定理及推论:
(1)圆周角的度数等于它所对的弧的度数的一半;
(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)
(3)“等弧对等角”“等角对等弧”;
(4)“直径对直角”“直角对直径”;(如图)
(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)
(1) (2)
(3) (4)
几何表达式举例:
(1) ∵∠ACB=∠AOB
∴ ……………
(2) ∵ AB是直径
∴ ∠ACB=90°
(3) ∵ ∠ACB=90°
∴ AB是直径
(4) ∵ CD=AD=BD
∴ ΔABC是RtΔ
5.圆内接四边形性质定理:
圆内接四边形的对角互补,
并且任何一个外角都等于
它的内对角.
几何表达式举例:
∵ ABCD是圆内接四边形
∴ ∠CDE =∠ABC
∠C+∠A =180°
6.切线的判定与性质定理:
如图:有三个元素,“知二可推一”;
需记忆其中四个定理.
(1)经过半径的外端并且垂直于这条
半径的直线是圆的切线;
(2)圆的切线垂直于经过切点的半径;
※(3)经过圆心且垂直于切线的直线必经过切点;
※(4)经过切点且垂直于切线的直线必经过圆心.
SHAPE \* MERGEFORMAT
几何表达式举例:
(1) ∵OC是半径
∵OC⊥AB
∴AB是切线
(2) ∵OC是半径
∵AB是切线
∴OC⊥AB
(3) ……………
7.切线长定理:
从圆外一点引圆的两条切线,
它们的切线长相等;圆心和这一
点的连线平分两条切线的夹角.
几何表达式举例:
∵ PA、PB是切线
∴ PA=PB
∵PO过圆心
∴∠APO =∠BPO
8.弦切角定理及其推论:
(1)弦切角等于它所夹的弧对的圆周角;
(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;
(3)弦切角的度数等于它所夹的弧的度数的一半.(如图)
几何表达式举例:
(1)∵BD是切线,BC是弦
∴∠CBD =∠CAB
(2)
∵ ED,BC是切线
∴ ∠CBA =∠DEF
9.相交弦定理及其推论:
(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;
(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.
几何表达式举例:
(1) ∵PA·PB=PC·PD
∴………
(2) ∵AB是直径
∵PC⊥AB
∴PC2=PA·PB
10.切割线定理及其推论:
(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;
(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.
SHAPE \* MERGEFORMAT SHAPE \* MERGEFORMAT
几何表达式举例:
(1) ∵PC是切线,
PB是割线
∴PC2=PA·PB
(2) ∵PB、PD是割线
∴PA·PB=PC·PD
11.关于两圆的性质定理:
(1)相交两圆的连心线垂直平分两圆的公共弦;
(2)如果两圆相切,那么切点一定在连心线上.
(1) (2)
几何表达式举例:
(1) ∵O1,O2是圆心
∴O1O2垂直平分AB
(2) ∵⊙1 、⊙2相切
∴O1 、A、O2三点一线
12.正多边形的有关计算:
(1)中心角(n ,半径RN , 边心距rn ,
边长an ,内角(n , 边数n;
(2)有关计算在RtΔAOC中进行.
公式举例:
(1) (n = EMBED Equation.3 ;
(2) EMBED Equation.3
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一 基本概念:
圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高
三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外)、 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正多边形的中心角.
二 定理:
不在一直线上的三个点确定一个圆.
SHAPE \* MERGEFORMAT
2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.
三 公式:
1.有关的计算:(1)圆的周长C=2πR;(2)弧长L= EMBED Equation.3