365文库
登录
注册
2

浙教版高一数学必修一作业本答案:集合与函数概念

63阅读 | 3收藏 | 4页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
浙教版高一数学必修一作业本答案:集合与函数概念第1页
浙教版高一数学必修一作业本答案:集合与函数概念第2页
浙教版高一数学必修一作业本答案:集合与函数概念第3页
浙教版高一数学必修一作业本答案:集合与函数概念第4页
福利来袭,限时免费在线编辑
转Pdf
right
1/4
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
Threeheart 上传于:2024-06-07
浙教版高一数学必修一作业本答案:集合与函数概念 以下是为大家整理的关于《浙江版高一数学必修一作业本答案:集合与函数概念》,供大家学习参考! 第一章集合与函数概念 1.1集合 1 1 1集合的含义与表示 1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}. 7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6. 10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不,如可表示为(x,y)|y=x+2, y=x2. 11.-1,12,2. 1 1 2集合间的基本关系 1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤. 7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A. 11.a=b=1. 1 1 3集合的基本运算(一) 1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}. 8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1. 11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B进行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠ 时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意. 1 1 3集合的基本运算(二) 1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z. 7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}. 10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}. 11.a=4,b=2.提示:∵A∩ 綂 UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩ 綂 UB={2},∴-6 綂 UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂 UB,而2∈ 綂 UB,满足条件A∩ 綂 UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2}, ∴2 綂 UB,与条件A∩ 綂 UB={2}矛盾.1.2函数及其表示 1 2 1函数的概念(一) 1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞). 7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1. 10.(1)略.(2)72.11.-12,234. 1 2 1函数的概念(二) 1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0. 7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞). 9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0). 1 2 2函数的表示法(一) 1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略. 8. x1234y828589889.略.10.1.11.c=-3. 1 2 2函数的表示法(二) 1.C.2.D.3.B.4.1.5.3.6.6.7.略. 8.f(x)=2x(-1≤x<0), -2x+2(0≤x≤1). 9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2, a+b=0,解得a=1,b=-1. 10.y=1.2(0<x≤20), 2.4(20<x≤40), 3.6(40<x≤60), 4.8(60<x≤80).11.略. 1.3函数的基本性质 1 3 1单调性与(小)值(一) 1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12. 7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1. 11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数. 1 3 1单调性与(小)值(二) 1.D.2.B.3.B.4.-5,5.5.25. 6.y=316(a+3x)(a-x)(0<x<a),312a2,5364a2.7.12.8.8a2+15.9.(0,1].10.2500m2. 11.日均利润,则总利润就.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,
tj