365文库
登录
注册
2

天津市高考数学试卷理科答案与解析

173阅读 | 5收藏 | 13页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
天津市高考数学试卷理科答案与解析第1页
天津市高考数学试卷理科答案与解析第2页
天津市高考数学试卷理科答案与解析第3页
天津市高考数学试卷理科答案与解析第4页
天津市高考数学试卷理科答案与解析第5页
天津市高考数学试卷理科答案与解析第6页
天津市高考数学试卷理科答案与解析第7页
天津市高考数学试卷理科答案与解析第8页
天津市高考数学试卷理科答案与解析第9页
天津市高考数学试卷理科答案与解析第10页
天津市高考数学试卷理科答案与解析第11页
天津市高考数学试卷理科答案与解析第12页
天津市高考数学试卷理科答案与解析第13页
福利来袭,限时免费在线编辑
转Pdf
right
1/13
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
我心非石 上传于:2024-05-29
2015年天津市高考数学试卷(理科) 参考答案与试题解析 一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(5分)(2015?天津)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩?UB=(  ) A. {2,5} B. {3,6} C. {2,5,6} D. {2,3,5,6,8} 考点: 交、并、补集的混合运算. 专题: 集合. 分析: 由全集U及B,求出B的补集,找出A与B补集的交集即可; 解答: 解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7}, ∴?UB={2,5,8}, 则A∩?UB={2,5}. 故选:A. 点评: 此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键. 2.(5分)(2015?天津)设变量x,y满足约束条件,则目标函数z=x+6y的最大值为(  ) A. 3 B. 4 C. 18 D. 40 考点: 简单线性规划. 专题: 不等式的解法及应用. 分析: 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值. 解答: 解:作出不等式组对应的平面区域如图:(阴影部分). 由z=x+6y得y=﹣x+z, 平移直线y=﹣x+z, 由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大, 此时z最大. 由,解得,即A(0,3) 将A(0,3)的坐标代入目标函数z=x+6y, 得z=3×6=18.即z=x+6y的最大值为18. 故选:C. 点评: 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法. 3.(5分)(2015?天津)阅读如图的程序框图,运行相应的程序,则输出S的值为(  ) A. ﹣10 B. 6 C. 14 D. 18 考点: 程序框图. 专题: 图表型;算法和程序框图. 分析: 模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=8时满足条件i>5,退出循环,输出S的值为6. 解答: 解:模拟执行程序框图,可得 S=20,i=1 i=2,S=18 不满足条件i>5,i=4,S=14 不满足条件i>5,i=8,S=6 满足条件i>5,退出循环,输出S的值为6. 故选:B. 点评: 本题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S的值是解题的关键,属于基础题. 4.(5分)(2015?天津)设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的(  ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 考点: 必要条件、充分条件与充要条件的判断. 专题: 简易逻辑. 分析: 根据不等式的性质,结合充分条件和必要条件的定义进行判断即可. 解答: 解:由“|x﹣2|<1”得1<x<3, 由x2+x﹣2>0得x>1或x<﹣2, 即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件, 故选:A. 点评: 本题主要考查充分条件和必要条件的判断,比较基础. 5.(5分)(2015?天津)如图,在圆O中,M、N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为(  ) A. B. 3 C. D. 考点: 与圆有关的比例线段. 专题: 选作题;推理和证明. 分析: 由相交弦定理求出AM,再利用相交弦定理求NE即可. 解答: 解:由相交弦定理可得CM?MD=AM?MB, ∴2×4=AM?2AM, ∴AM=2, ∴MN=NB=2, 又CN?NE=AN?NB, ∴3×NE=4×2, ∴NE=. 故选:A. 点评: 本题考查相交弦定理,考查学生的计算能力,比较基础. 6.(5分)(2015?天津)已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为(  ) A. ﹣=1 B. ﹣=1 C. ﹣=1 D. ﹣=1 考点: 双曲线的标准方程. 专题: 计算题;圆锥曲线的定义、性质与方程. 分析: 由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程. 解答: 解:由题意,=, ∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上, ∴c=, ∴a2+b2=c2=7, ∴a=2,b=, ∴双曲线的方程为. 故选:D. 点评: 本题主要考查双曲线和抛物线的标准方程与几何性质,考查学生的计算能力,属于基础题. 7.(5分)(2015?天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(  ) A. a<b<c B. a<c<b C. c<a<b D. c<b<a 考点: 函数单调性的性质. 专题: 函数的性质及应用. 分析: 根据f(x)为偶函数便可求出m=0,从而f(x)=2|x|﹣1,这样便知道f(x)在[0,+∞)上单调递增,根据f(x)为偶函数,便可将自变量的值变到区间[0,+∞)上:a=f(|log0.53|),b=f(log25),c=f(0),然后再比较自变量的值,根据f(x)在[0,+∞)上的单调性即可比较出a,b,c的大小. 解答: 解:∵f(x)为偶函数; ∴f(﹣x)=f(x); ∴2|﹣x﹣m|﹣1=2|x﹣m|﹣1; ∴|﹣x﹣m|=|x﹣m|; (﹣x﹣m)2=(x﹣m)2; ∴mx=0; ∴m=0; ∴f(x)=2|x|﹣1; ∴f(x)在[0,+∞)上单调递增,并且a=f(|log0.53|)=f(log23),b=f(log25),c=f(0); ∵0<log23<log25; ∴c<a<b. 故选:C. 点评: 考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.对数的换底公式的应用,对数函数的单调性,函数单调性定义的运用. 8.(5分)(2015?天津)已知函数f(x)=,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是(  ) A. (,+∞) B. (﹣∞,) C. (0,) D. (,2) 考点: 根的存在性及根的个数判断. 专题: 创新题型;函数的性质及应用. 分析: 求出函数y=f(x)﹣g(x)的表达式,构造函数h(x)=f(x)+f(2﹣x),作出函数h(x)的图象,利用数形结合进行求解即可. 解答: 解:∵g(x)=b﹣f(2﹣x), ∴y=f(x)﹣g(x)=f(x)﹣b+f(2﹣x), 由f(x)﹣b+f(2﹣x)=0,得f(x)+f(2﹣x)=b, 设h(x)=f(x)+f(2﹣x), 若x≤0,则﹣x≥0,2﹣x≥2, 则h(x)=f(x)+f(2﹣x)=2+x+x2, 若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2, 则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2, 若x>2,﹣x<0,2﹣x<0, 则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8. 即h(x)=, 作出函数h(x)的图象如图: 当x≤0时,h(x)=2+x+x2=(x+)2+≥, 当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥, 故当b=时,h(x)=b,有两个交点, 当b=2时,h(x)=b,有无数个交点, 由图象知要使函数y=f(x)﹣g(x)恰有4个零点, 即h(x)=b恰有4个根, 则满足<b<2, 故选:D. 点评: 本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键. 二.填空题(每小题5分,共30分) 9.(5分)(2015?天津)i是虚数单位,若复数(1﹣2i)(a+i)是纯虚数,则实数a的值为 ﹣2 . 考点: 复数的基本概念. 专题: 数系的扩充和复数. 分析: 由复数代数形式的乘除运算化简,再由实部等于0且虚部不等于0求得a的值. 解答: 解:由(1﹣2i)(a+i)=(a+2)+(1﹣2a)i为纯虚数, 得,解得:a=﹣2. 故答案为:﹣2. 点评: 本题考查了复数代数形式的乘法运算,考查了复数为纯虚数的条件,是基础题. 10.(5分)(2015?天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为  m3. 考点: 由三视图求面积、体积. 专题: 计算题;空间位置关系与距离. 分析: 根据几何体的三视图,得出该几何体是圆柱与两个圆锥的组合体,结合图中数据求出它的体积. 解答: 解:根据几何体的三视图,得; 该几何体是底面相同的圆柱与两个圆锥的组合体, 且圆柱底面圆的半径为1,高为2,圆锥底面圆的半径为1,高为1; ∴该几何体的体积为 V几何体=2×π?12×1+π?12?2 =π. 故答案为:π. 点评: 本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目. 11.(5分)(2015?天津)曲线y=x2与y=x所围成的封闭图形的面积为  . 考点: 定积分在求面积中的应用. 专题: 计算题;导数的概念及应用. 分析: 先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为1,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 解答: 解:先根据题意画出图形,得到积分上限为1,积分下限为0 直线y=x与曲线y=x2所围图形的面积S=∫01(x﹣x2)dx 而∫01(x﹣x2)dx=()|01=﹣= ∴曲边梯形的面积是. 故答案为:. 点评: 本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,解题的关键就是求原函数. 12.(5分)(2015?天津)在(x﹣)6的展开式中,x2的系数为  . 考点: 二项式定理的应用. 专题: 计算题;二项式定理. 分析: 在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得x2的系数. 解答: 解:(x﹣)6的展开式的通项公式为Tr+1=?(x)6﹣r?(﹣)r=(﹣)r??x6﹣2r, 令6﹣2r=2,解得r=2,∴展开式中x2的系数为×=, 故答案为:. 点评: 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题. 13.(5分)(2015?天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为 8 . 考点: 余弦定理. 专题: 解三角形. 分析: 由cosA=﹣,A∈(0,π),可得sinA=.利用S△ABC==,化为bc=24,又b﹣c=2,解得b,c.由余弦定理可得:a2=b2+c2﹣2bccosA即可得出. 解答: 解:∵A∈(0,π),∴sinA==. ∵S△ABC==bc=,化为bc=24, 又b﹣c=2,解得b=6,c=4. 由余弦定理可得:a2=b2+c2﹣2bccosA=36+16﹣48×=64. 解得a=8. 故答案为:8. 点评: 本题考查了余弦定理、同角三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 14.(5分)(2015?天津)在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且=λ,=,则?的最小值为  . 考点: 平面向量数量积的运算. 专题: 创新题型;平面向量及应用. 分析: 利用等腰梯形的性质结合向量的数量积公式将所求表示为关于λ的代数式,根据具体的形式求最值. 解答: 解:由题意,得到AD=BC=CD=1,所以?=()?()=()?() ==2×1×cos60°+λ1×1×cos60°+×2×1+×1×1×cos120° =1++﹣≥+=(当且仅当时等号成立); 故答案为:. 点评: 本题考查了等腰梯形的性质以及向量的数量积公式的运用、基本不等式求最值;关键是正确表示所求,利用基本不等式求最小值. 三.解答题(本大题共6小题,共80分) 15.(13分)(2015?天津)已知函数f(x)=sin2x﹣sin2(x﹣),x∈R. (Ⅰ)求f(x)的最小正周期; (Ⅱ)求f(x)在区间[﹣,]内的最大值和最小值. 考点: 两角和与差的正弦函数;三角函数的周期性及其求法;三角函数的最值. 专题: 三角函数的求值. 分析: (Ⅰ)由三角函数公式化简可得f(x)=﹣sin(2x﹣),由周期公式可得; (Ⅱ)由x∈[﹣,]结合不等式的性质和三角函数的知识易得函数的最值. 解答: 解:(Ⅰ)化简可得f(x)=sin2x﹣sin2(x﹣) =(1﹣cos2x)﹣[1﹣cos(2x﹣)] =(1﹣cos2x﹣1+cos2x+sin2x) =(﹣cos2x+sin2x) =sin(2x﹣) ∴f(x)的最小正周期T==π; (Ⅱ)∵x∈[﹣,],∴2x﹣∈[﹣,], ∴sin(2x﹣)∈[﹣1,],∴sin(2x﹣)∈[﹣,], ∴f(x)在区间[﹣,]内的最大值和最小值分别为,﹣ 点评: 本题考查两角和与差的三角函数公式,涉及三角函数的周期性和最值,属基础题. 16.(13分)(2015?天津)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加,现有来自甲协会的运动员3名,其中种子选手2名,乙协会的运动员5名,其中种子选手3名,从这8名运动员中随机选择4人参加比赛. (Ⅰ)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率; (Ⅱ)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望. 考点: 离散型随机变量的期望与方差;离散型随机变量及其分布列. 专题: 概率与统计. 分析: (Ⅰ)利用组合知识求出基本事件总数及事件A发生的个数,然后利用古典概型概率计算公式得答案; (Ⅱ)随机变量X的所有可能取值为1,2,3,4,由古典概型概率计算公式求得概率,列出分布
tj