垃圾渗滤液处理技术的展望
彭姚明
中国河南省新乡市新乡大学化学与化学工程学系。
摘要
垃圾填埋场的设计是为了处理经济发展带来的大量的废弃物,降低他们的潜在的对环境的影响;然而,垃圾填埋场管理不当也可能会造成严重的环境威胁,例如通过排放高强度污染的废水,其也被称为渗滤液。本文重点研究了不同技术的垃圾渗滤液处理的研究成果,其中包括生物处理和膜技术。最后展望了垃圾渗滤液处理的发展前景。
关键词:垃圾填埋场,渗滤液,环境保护,前景
1.概述
垃圾渗滤液是由自然湿度和有机物中残留的湿度,经过微生物降解,有机物质透过细胞膜和表层覆盖,携带大量的可溶性或者固体悬浮物而组成的液体。垃圾渗滤液的化学和微生物成分是非常复杂的和有很大的变化。它不仅仅和垃圾填埋场中的废弃物成分有关,还有受到外部环境条件的影响和垃圾填埋厂随着运营和时间的变化,内部微生物发生的变化的影响。 (El-Fadel et al .2002;Kjeldsen et al .,2002)。垃圾渗滤液通常是具有强烈的气味并且携带高负荷的有机和无机物的黑色液体。
垃圾渗滤液通常是一种深色的液体,带有强烈的气味,带有很高的有机和无机的负载。它的特征之一是水溶液,其中有四组污染物存在:溶解有机物(挥发性脂肪酸和耐火材料有机物质如腐殖质物质),宏观无机化合物(Ca2 +,Mg2 +,Na+,K + NH4 ,Mn2 + HCO-3),重金属(三价铬,Cd2 +,Cu2 +,Pb2 + Ni2 + Zn2 +),和异型生物质有机化合物来自化学和国内残留在低浓度(芳香族碳氢化合物、酚类化合物、农药等)(克里斯腾森和Kjeldsen,1991),表明微生物,主要是总耐热性大肠杆菌(Moravia et al., 2013)。表1根据成分变化对垃圾渗滤液的分类进行了总结。在这方面,年轻的垃圾渗滤液引起酸化的通常特点是高生化需氧量(BOD)(4000 - 13000 mg / L)和化学需氧量(COD)(30000 - 60000 mg / L)的浓度,适度的高强度铵氮(500 - 2000 mg / L),高比率的BOD / COD从0.4到0.7和pH值低至4(wu et al . 2001;Morais和Zamora, 2005),具有可生物降解的挥发性脂肪酸(VFAs)似乎是其主要成分(Aziz et al. 2007)。表1为填埋渗滤液的分类,根据成分的变化。
2.垃圾渗滤液处理的回顾与发展
2.1.生物处理
由于其可靠性、简洁性和高性价比,生物处理(悬浮/附着生长)通常被用于去除含有高浓度BOD的渗滤液。生物降解是由微生物进行的,微生物可以在厌氧条件下降解有机化合物到二氧化碳和污泥中,并在厌氧条件下分解沼气(一种主要由CO2和CH4组成的混合物) (Renou et al. 2008)。生物学过程已证明,当BOD/ COD比值具有高值(>0.5)时,从未成熟的浸出液中去除有机物和含氮物质是非常有效的。随着时间的推移,难降解化合物的主要存在(主要是腐殖酸和富氧酸)倾向于限制过程的有效性(Kargi和Pamukoglu, 2003;Vilar et al .,2011)。Yabroudi et al.(2013)通过氮化/活性污泥序批反应器对垃圾渗滤液的生物处理进行了研究。在缺氧阶段(1 h)结束时,N-NO2的去除效率在8%至31%之间,说明渗滤液中容易降解的有机物含量较低。在有氧阶段(48小时)的处理周期结束时,在氮化过程中没有发现不平衡,具体的比率从0.043到0.154 kg不等。N-NH3 /kg。SSV日,证明了在低C/N的废水处理中,简化的硝化/反硝化作用的适用性。Zhu et al.(2013)引入了一种将ASBR与脉冲SBR (PSBR)相结合的系统,以提高垃圾渗滤液中COD和氮的去除效果。从联合运行期(157天)得到的结果显示,在0.43-0.62 gCOD gVSS1第1天的特定负载率下,ASBR的COD去除率为83-88%。根据不同影响的NH 4 -N的不同,PSBR的操作可以分为4个阶段,最终增加到800-1000 mg L1,得到的总氮(TN)去除率超过90%,而流出的TN小于40 mg L1。结果表明,该系统的COD和TN去除率分别为89.61-96.73%和97.03-98.87%。Eldyasti et al。(2011)循环流化床生物反应器(CFBBR)应用于垃圾渗滤液的生物处理,在空床接触时间(EBCTs)0.49,和0.41 d和体积鳕鱼营养负荷的2.2 - -2.6kg/ d(m3),0.7 - -0.8kgN / d(m3)和0.014 - -0.016kgP / d(m3),被用来校准和比较发达的流程模型BioWin AQUIFAS。BioWin和AQUIFAS都能预测大部分性能参数,如:effluent TKN、NH4-N、NO3-N、TP、PO4-P、TSS和VSS,平均误差(APE)为0-20%。BioWin低估了80%的出水BOD和SBOD值,而含水量则预测出了50%的出水BOD和SBOD。Xu et al.(2010)在SBR中加入了部分硝化、厌氧氨氧化(Anammox)和异养反硝化的生物处理方法,对垃圾渗滤液进行了周期性的空气处理。30±1 C和的工作温度
在缺氧阶段(1 h)结束时,N-NO2的去除效率在8%至31%之间,说明渗滤液中容易降解的有机物含量较低。在有氧阶段(48小时)的处理周期结束时,在氮化过程中没有发现不平衡,具体的比率从0.043到0.154 kg不等。N-NH3 /kg·SSV·d,证明了在低C/N的废水处理中,简化的硝化/反硝化作用的适用性。Zhu et al.(2013)引入了一种将ASBR与脉冲SBR (PSBR)相结合的系统,以提高垃圾渗滤液中COD和氮的去除效果。从联合运行期(157天)得到的结果显示,在0.43-0.62 gCOD gVSS-1第1天的特定负载率下,ASBR的COD去除率为83-88%。根据不同影响的NH 4 -N的不同,PSBR的操作可以分为4个阶段,最终增加到800-1000 mg L1,得到的总氮(TN)去除率超过90%,而流出的TN小于40 mg L1。结果表明,该系统的COD和tn去除率分别为89.61-96.73%和97.03-98.87%。Eldyasti et al。(2011)循环流化床生物反应器(CFBBR)应用于垃圾渗滤液的生物处理,在空床接触时间(EBCTs)0.49,和0.41 d和体积营养负荷的2.2 - -2.6kg/ d(m3),0.7 - -0.8kgN / d(m3)和0.014 - -0.016kgP / d(m3),被用来校准和比较发达的流程模型BioWin AQUIFAS。BioWin和AQUIFAS都能预测大部分性能参数,如:effluent TKN、NH4-N、NO3-N、TP、PO4-P、TSS和VSS,平均误差(APE)为0-20%。BioWin低估了80%的出水BOD和SBOD值,而含水量则预测出了50%的出水BOD和SBOD。Xu et al.(2010)在SBR中加入了部分硝化、厌氧氨氧化(Anammox)和异养反硝化的生物处理方法,对垃圾渗滤液进行了周期性的空气处理。在SBR中保持了30 1 C的操作温度和1.0-1.5 mg/L的溶解氧浓度。首先,将Anammox生物质与好氧活性污泥(80% w/w)的混合物进行了接种,并加入了逐渐增加的N-loading的无机合成废水。在接种86天后,最大需氧氨氧化和厌氧氨氧化的活性分别达到0.79和0.18 (kg NH4 + -N /kgdw/day)。其次,一个意想不到的异养反硝化细菌接种到反应堆以及垃圾渗滤液喂食生的,最后最大活动的有氧氧化铵,厌氧氨氧化和反硝化作用达到2.83(kgNHþ4 - n / kgdw /天),0.65(kgNH4+ - n / kgdw /天)和0.11(kgNOþ3 - n / kgdw /天),分别。3L labscale SBR的示意图如图1所示。
Yahmed et al.(2009)使用一个有氧试验装置,用三个浸没和固定的生物膜反应器进行了Jebel Chekir垃圾填埋场的处理。初步分析表明,渗滤液中生物降解率较高(BOD5/COD= 0.4),这意味着可以应用生物处理工艺。在本研究中获得的性能结果表明有显著的有机物质还原;60%到90%的TOC还原得到。然而,一个含有细菌分离菌的混合物在原始浸出液中,达到了约84%的TOC收率。Trabelsi等人(2009)研究了基于间歇反应器(V = 150 L)的内生生物量活性的缺氧消化,用于处理Jebel Chekir垃圾填埋场的垃圾渗滤液。在90天的保留时间内,厌氧消化反应器已分别降低了91%、46%、65%、45%和63%的BOD5、COD、TOC、NH4-N和TKN。随后,在3个曝气的水中生物反应器中,废水进一步被处理,7天的总保留时间。进一步减少这些缺氧硝化反应堆的保留时间为90天,其结果显示,BOD5、COD、TOC、NH4-N和TKN分别下降了91%、46%、65%、45%和63%。后来,在三个充气的水下生物反应器中,污水被进一步处理,7天的总保留时间。在有氧反应器中进一步降低了这些参数,而缺氧和有氧反应堆的耦合系统所达到的整体去除效率分别为95%、COD 94%和NH4+-92%此外,在此工作中还研究了通过吸附在活性碳上(PAC)来去除重金属的后处理方法,并被发现有效地提高了COD的去除率,达到了99.7%的总水平。Sun等人(2009a,b)研究了反硝化过程中亚硝酸盐的积累,并对在缺氧/厌氧的厌氧污泥床(UASB)中处理预先处理的垃圾填埋场渗滤液进行了处理。亚硝酸盐在不同的初始硝酸浓度(64.9、54.8、49.3和29.5 mg L 1)和低温下积累,而氧化还原电位(ORP)剖面上的两个断点表明硝酸盐和亚硝酸盐还原的完成。通常,硝酸盐还原率被用作唯一的参数来描述脱氮率,而亚硝酸盐甚至没有被测量。为了精确起见,总氧化氮(硝酸盐+亚硝酸盐)作为一种测量方法,尽管描述过程的细节可能被忽略。此外,还进行了批量试验,以调查在脱氮过程中碳源/n比率和碳源类型对亚硝酸盐积累的影响。据观察,碳源足以将硝酸盐还原成亚硝酸盐,但由于氮化钾在氮化过程中所占的比例低于理论临界水平3。75。在这项工作中使用的五种碳源,除了葡萄糖,可能会导致亚硝酸盐的堆积。从实验结果和文献资料中得出结论,在SBR活性污泥系统中可以包含Alcaligene种。阴和群(2006)应用了一种uasb/剥脱塔/orbal氧化沟(加药PAC)处理垃圾处理的过程。一年多的实际操作表明,COD和去除氮的效率很高。污水水质稳定。所有污水的参数均达到国家排放标准。Wang等人(2010年)应用了两个阶段的上游污泥毯(UASB)和测序批处理反应堆(SBR)系统来处理城市垃圾填埋场渗滤液,并高效地去除氮。结果表明,厌氧生物降解对COD的去除是非常有效的。排放的NH4+-N去除效率保持在99%左右。总氮(TN)去除效率可达85%,污水排放总量低于15毫克/升。Sun等人(2010年)通过使用实验室规模的缺氧/厌氧的uasb-a/o工艺,研究了含有高氨氮含量的城市垃圾填埋场的真实渗滤液的处理情况。摘要在实现同步COD和氮去除的基础上,研究了如何实现和稳定a/o反应器的局部硝化反应。反硝化和产甲烷菌是在UASB反应堆中进行的,有机物和NOx的平均去除率分别为5.3和1.1千克/(m3 d)。经过54天的操作,完成了部分硝化反应(亚硝酸盐积累比超过50%),70天后,在a/o反应堆中,亚硝酸盐的累积比率达到了90%以上,环境温度为12-30.6 c。
图1
原文
Perspectives on technology for landfill leachate treatment
Peng Yao
Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, Henan, China
Received 13 August 2013; accepted 18 September 2013
Available online 29 September 2013
Abstract
Landfills are designed to dispose high quantities of waste at economical costs with potentially less environmental effects; however, improper landfill management may pose serious environmental threats through discharge of high strength polluted wastewater also known as leachate. This paper focused on achievements on landfill leachate treatment by different technology, which contains biological treatment and membrane technology. Finally, development and prospect of landfill leachate treatment were predicted.
KEYWORDS:Landfill leachate; Environmental protection; Prospect
1. Introduction
Landfill leachate is the liquid produced by natural humidity and water present in the residue of organic matter, the result of the biological degradation of organic matter present and by water infiltration in the covering and inner layers of landfill cells, supplementing dissolved or suspended material originating from the residue mass. The chemical and microbiological composition of landfill leachate is complex and variable, since apart from being dependent upon features of residual deposit, it is influenced by environmental conditions, the operational manner of the landfill and by the dynamics of the decomposition process that occurs inside the cells (El-Fadel et al., 2002; Kjeldsen et al., 2002).
Landfill leachate is generally a dark coloured liquid, with a strong smell, which carries a high organic and inorganic load. One of its characteristic features is an aqueous solution in which four groups of pollutant are present: dissolved organic matter (volatile fatty acid and more refractory organic matter such as humic substances), macro inorganic compounds (Ca2+, Mg2+, Na+, K+, NH4+, Fe2+, Mn2+, HCO-3 ), heavy metals (Cd2+, Cr3+, Cu2+, Pb2+, Ni2+, Zn2+), and xenobiotic organic compounds originating from chemical and domestic residue present at low concentrations (aromatic hydrocarbons, phenols, pesticides, etc.) (Christensen and Kjeldsen, 1991), and microorganisms that indicate, predominantly total and thermotolerant coliform (Moravia et al., 2013). Table 1 summarizes the classification of landfill leachate according to the composition changes. In this respect, young acidogenic landfill leachate is commonly characterized by high biochemical oxygen demand (BOD) (4000–13,000 mg/L) and chemical oxygen demand (COD) (30,000–60,000 mg/L) concentrations, moderately high strength of ammonium nitrogen (500–2000 mg/L), high ratio of BOD/COD ranging from 0.4 to 0.7 and a pH value as low as 4 (Wu et al. 2001; Morais and Zamora, 2005), with biodegradable volatile fatty acids (VFAs) appear to be its major constituents (Aziz et al. 2007). Table 1 represents classification of landfill leachate according to the composition changes.
2. Review and evolution of landfill leachate treatments
2.1. Biological treatment
Due to its reliability, simplicity and high cost-effectiveness, biological treatment (suspended/attached growth) is commonly used for the removal of the bulk of leachate containing high concentrations of BOD. Biodegradation is carried out by microorganisms, which can degrade organic compounds to carbon dioxide and sludge under aerobic conditions and to biogas (a mixture comprising chiefly CO2 and CH4) under anaerobic conditions (Renou et al. 2008). Biological processes have been shown to be very effective in removing organic and nitrogenous matter from immature leachates when the BOD/ COD ratio has a high value (>0.5). With time, the major presence of refractory compounds (mainly humic and fulvic acids) tends to limit process’s effectiveness (Kargi and Pamukoglu, 2003; Vilar et al., 2011). Yabroudi et al. (2013) studied the landfill leachate biological treatment by nitritation/in an activated sludge sequencing batch reactor. The removal efficiencies of N–NO2-at the end of the anoxic phase (1 h) ranged between 8% and 31% indicating low availability of easily biodegradable organic matter in the leachate. No imbalance was observed over the nitritation process at the end of the aerobic phase (48 h) of treatment cycles and the specific rates ranged from 0.043 to 0.154 kg. N-NH3/kg.SSV day, demonstrating the applicability of the simplified nitritation/denitritation in the treatment of effluents with low C/N. Zhu et al. (2013) introduced a system which combined ASBR with pulsed SBR (PSBR) to enhance COD and nitrogen removal from the real landfill leachate. The results obtained from the joint operation period (157 days) show that the COD removal rate of ASBR was 83–88% under the specific loading rate of 0.43–0.62 gCOD gVSS1 day1. PSBR’s operation can be divided into four phases according to the different influent NH 4 –N which increased to 800–1000 mg L1 finally, and total nitrogen (TN) removal rate of more than 90% with the effluent TN of less than 40 mg L1 was obtained. Consequently, the system achieved COD andTN removal rate of 89.61–96.73% and 97.03–98.87%, respectively. Eldyasti et al. (2011) applied circulating fluidized bed bioreactor (CFBBR) to biological treatment of landfill leachate, at empty bed contact times (EBCTs) of 0.49, and 0.41 d and volumetric nutrient loading rates of 2.2–2.6 kg COD/(m3 d), 0.7–0.8 kg N/(m3 d), and 0.014–0.016 kg P/(m3 d), were used to calibrate and compare developed process models in BioWin and AQUIFAS. BioWin and AQUIFAS were both capable of predicting most of the performance parameters such as effluent TKN, NH4–N, NO3–N, TP, PO4–P, TSS, and VSS with an average percentage error (APE) of 0–20%. BioWin underpredicted the effluent BOD and SBOD values for various runs by 80% while AQUIFAS predicted effluent BOD and SBOD with an APE of 50%. Xu et al. (2010) developed a biological treatment with the integration of partial nitrification, anaerobic ammonium oxidation (Anammox) and heterotrophic denitrific