这个问题看似简单,然而许多人作过尝试始终没有能找到答案。因此,一群大学生就写信给当时年仅20岁的大数学家欧拉,请他分析一下。欧拉从千百人次的失败中,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥。为了证明这种猜想是正确的,欧拉用简单的几何图形来表示陆地和桥。他是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成A、B、C、D 4个点,7座桥表示成7条连接这4个点的线,如图“七桥连线”所示。
七桥连线简化图
再把它简化成图形,就成了右图“七桥连线简化图”。
在说欧拉的推论前,我们先说说偶点和奇点的问题。
奇偶数点图
什么是偶点呢?一个点如果有偶数条边,它就是偶点。如下面“奇偶数点图”的A、B、E、F点。反之,如果一个点有奇条边数,它就是奇点。如图中的C、D这两点。
偶点和奇点与能不能一次通过这座桥有关系吗?别急,我们慢慢来说。
欧拉认为,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点。图上其它的点是“过路点”——画的时候要经过它。
“过路点”有什么特点呢?它应该是“有进有出”的点,有一条边进这点,那么就要有一条边出这点,不可能是有进无出或有出无进。如果只进无出,它就是终点;如果有出无进,它就是起点。因此,在“过路点”进出的边总数应该是偶数,即“过路点”是偶点。
如果起点和终点是同一点,那么它也是属于“有进有出”的点,因此必须是偶点,这样图上全体点都是偶点。
如果起点和终点不是同一点,那么它们必须是奇点,因此这个图最多只能有二个奇点。
把上面所说的归纳起来,说简单点就是:
能一笔画的图形只有两类