梁模板扣件钢管高支撑架计算书
高支撑架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。
支撑高度在4米以上的模板支架被称为扣件式钢管高支撑架,对于高支撑架的计算规范存在重要疏漏,使计算极容
易出现不能完全确保安全的计算结果。本计算书还参照《施工技术》2002.3.《扣件式钢管模板高支撑架设计和使
用安全》,供脚手架设计人员参考。
模板支架搭设高度为20.00米,
基本尺寸为:梁截面 B×D=1000mm×1000mm,梁支撑立杆的横距(跨度方向) l=1.20米,立杆的步距 h=1.20米,
梁底无承重立杆。
梁模板支撑架立面简图
采用的钢管类型为Φ48×3.5。
一、模板面板计算
面板为受弯结构,需要验算其抗弯强度和刚度。模板面板的按照多跨连续梁计算。
作用荷载包括梁与模板自重荷载,施工活荷载等。
1.荷载的计算:
(1)钢筋混凝土梁自重(kN/m):
q1 = 25.00×1.00×0.40=10kN/m
(2)模板的自重线荷载(kN/m):
q2 = 0.35×0.40×(2×1.00+1.00)/1.00=0.42kN/m
(3)活荷载为施工荷载标准值与振倒混凝土时产生的荷载(kN):
经计算得到,活荷载标准值 P1 = (1.00+2.00)×1.00×0.40=1.2kN
均布荷载 q = 1.2×10+1.2×0.42=12.504kN/m
集中荷载 P = 1.4×1.2=1.68kN
面板的截面惯性矩I和截面抵抗矩W分别为:
本算例中,截面惯性矩I和截面抵抗矩W分别为:
W = 40×1.8×1.8/6 = 21.6cm3;
I = 40×1.8×1.8×1.8/12 = 19.44cm4;
计算简图
弯矩图(kN.m)
剪力图(kN)
变形图(mm)
经过计算得到从左到右各支座力分别为
N1=7.09kN
N2=7.09kN
最大弯矩 M = 1.983kN.m
最大变形 V = 169.592mm
(1)强度计算
经计算得到面板强度计算值 f = 1.983×1000×1000/21600=91.806N/mm2
面板的强度设计值 [f],取15N/mm2;
面板的强度验算 f > [f],不满足要求!
(2)抗剪计算
截面抗剪强度计算值 T=3×7090/(2×400×18)=1.477N/mm2
截面抗剪强度设计值 [T]=1.4N/mm2
抗剪强度验算 T > [T],不满足要求!
(3)挠度计算
面板最大挠度计算值 v = 169.592mm
面板的最大挠度大于1000/250,不满足要求!
二、梁底支撑方木的计算
(一)梁底方木计算
按照三跨连续梁计算,最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下:
均布荷载 q = 7.09/0.40=17.725kN/m
最大弯矩 M = 0.1ql2=0.1×17.725×0.40×0.40=0.284kN.m
最大剪力 Q=0.6×0.40×17.725=4.254kN
最大支座力 N=1.1×0.40×17.725=7.799kN
方木的截面力学参数为
本算例中,截面惯性矩I和截面抵抗矩W分别为:
W = 5×8×8/6 = 53.33cm3;
I = 5×8×8×8/12 = 213.33cm4;
(1)方木强度计算
截面应力 =0.284×106/53330=5.33N/mm2
方木的计算强度小于13N/mm2,满足要求!
(2)方木抗剪计算
最大剪力的计算公式如下:
Q = 0.6ql
截面抗剪强度必须满足:
T = 3Q/2bh < [T]
截面抗剪强度计算值 T=3×4254/(2×50.00×80.00)=1.595N/mm2
截面抗剪强度设计值 [T]=1.3N/mm2
方木的抗剪强度计算不满足要求!
(3)方木挠度计算
最大变形 v =0.677×14.77×4004/(100×9500×2133300)=0.126mm
方木的最大挠度小于400/250,满足要求!
三、梁底支撑钢管计算
(一) 梁底支撑横向钢管计算
横向支撑钢管按照集中荷载作用下的连续梁计算。
集中荷载P取方木支撑传递力。
支撑钢管计算简图
支撑钢管弯矩图(kN.m)
支撑钢管变形图(mm)
支撑钢管剪力图(kN)
经过连续梁的计算得到
最大弯矩 Mmax=0.709kN.m
最大变形 Vmax=4.527mm
最大支座力 Qmax=7.09kN
截面应力 =0.709×106/5080=139.57N/mm2
支撑钢管的计算强度小于205.0N/mm2,满足要求!
支撑钢管的最大挠度小于1200/150或10mm,满足要求!
(二) 梁底支撑纵向钢管计算
纵向支撑钢管按照集中荷载作用下的连续梁计算。
集中荷载P取横向支撑钢管传递力。
支撑钢管计算简图
支撑钢管弯矩图(kN.m)
支撑钢管变形图(mm)
支撑钢管剪力图(kN)
经过连续梁的计算得到
最大弯矩 Mmax=2.269kN.m
最大变形 Vmax=8.336mm
最大支座力 Qmax=23.16kN
截面应力 =2.269×106/5080=446.65N/mm2
支撑钢管的计算强度大于205.0N/mm2,不满足要求!
支撑钢管的最大挠度小于1200/150或10mm,满足要求!
四、扣件抗滑移的计算
纵向或横向水平杆与立杆连接时,扣件的抗滑承载力按照下式计算(规范5.2.5):
R ≤ Rc
其中 Rc —— 扣件抗滑承载力设计值,取8.0kN;
R —— 纵向或横向水平杆传给立杆的竖向作用力设计值;
计算中R取最大支座反力,R=23.16kN
单扣件抗滑承载力的设计计算不满足要求,可以考虑采用双扣件!
当直角扣件的拧紧力矩达40--65N.m时,试验表明:单扣件在12kN的荷载下会滑动,其抗滑承载力可取8.0kN;
双扣件在20kN的荷载下会滑动,其抗滑承载力可取12.0kN。
五、立杆的稳定性计算
立杆的稳定性计算公式
其中 N —— 立杆的轴心压力设计值,它包括:
横杆的最大支座反力 N1=23.16kN (已经包括组合系数1.4)
脚手架钢管的自重 N2 = 1.2×0.149×20.00=3.576kN
楼板的混凝土模板的自重 N3=0.605kN
N = 23.16+3.576+0.605=27.341kN
—— 轴心受压立杆的稳定系数,由长细比 l0/i 查表得到;
i —— 计算立杆的截面回转半径 (cm);i = 1.58
A —— 立杆净截面面积 (cm2); A = 4.89
W —— 立杆净截面抵抗矩(cm3);W = 5.08
—— 钢管立杆抗压强度计算值 (N/mm2);
[f] —— 钢管立杆抗压强度设计值,[f] = 205.00N/mm2;
l0 —— 计算长度 (m);
如果完全参照《扣件式规范》不考虑高支撑架,由公式(1)或(2)计算
l0 = k1uh (1)
l0 = (h+2a) (2)
k1 —— 计算长度附加系数,按照表1取值为1.185;
u —— 计算长度系数,参照《扣件式规范》表5.3.3;u = 1.75
a —— 立杆上端伸出顶层横杆中心线至模板支撑点的长度;a = 0.00m;
公式(1)的计算结果: = 196.87N/mm2,立杆的稳定性计算 < [f],满足要求!
公式(2)的计算结果: = 74.55N/mm2,立杆的稳定性计算 < [f],满足要求!
如果考虑到高支撑架的安全因素,适宜由公式(3)计算
l0 = k1k2(h+2a) (3)
k2 —— 计算长度附加系数,按照表2取值为1.092;
公式(3)的计算结果: = 92.72N/mm2,立杆的稳定性计算 < [f],满足要求!
模板承重架应尽量利用剪力墙或柱作为连接连墙件,否则存在安全隐患。
表1 模板支架计算长度附加系数 k1
———————————————————