365文库
登录
注册
2

奥数讲座 三年级一笔画(一).doc

390阅读 | 13收藏 | 4页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
奥数讲座 三年级一笔画(一).doc第1页
奥数讲座 三年级一笔画(一).doc第2页
奥数讲座 三年级一笔画(一).doc第3页
奥数讲座 三年级一笔画(一).doc第4页
福利来袭,限时免费在线编辑
转Pdf
right
1/4
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
测谎人 上传于:2024-05-27
三年级一笔画(一)   如果一个图形可以用笔在纸上连续不断而且不重   复地一笔画成,那么这个图形就叫一笔画。显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。    同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。     所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?   当时的许多人都热衷于解决七桥问题,但是都没成功。后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。    我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。    欧拉的一笔画原理是: (1)一笔画必须是连通的(图形的各部分之间连接在一起); (2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点; (3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形不是一笔画。   利用一笔画原理,七桥问题很容易解决。因为图中A,B,C,D都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。   顺便补充两点: (1)一个图形的奇点数目一定是偶数。   因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。如果一个图形中奇点的数目是奇数,那么这个图形中与奇点相连接的端点数之和是奇数(奇数个奇数之和是奇数),与偶点相连的线的端点数之和是偶数(任意个偶数之和是偶数),于是得到所有端点的总数是奇数,这与前面的结论矛盾。所以一个图形的奇点数目一定是偶数。 (2)有K个奇点的图形要K÷2笔才能画成。   例如:下页左上图中的房子共有B,E,F,G,I,J六个奇点,所以不是一笔画。如果我们将其中的
tj