分数问题的解题策略
江苏兴化市西郊中心校(225700) 朱德阳
分数应用题是小学数学教学中的重、难点,对于小学生来说,精通者则百通,不通者则一窍不通。下面列举了分数应用题的一些解题策略,目的是帮助学生找到最佳解题思路,提高解题能力。
策略一 寻找不变量
一个数量的变化,往往会引起其他数量的变化。在诸多变化中,也常常会有一些不变的量,只有抓住不变量,从不变量入手,才能寻求解决问题的途径。
策略二 转化单位“1”
分数应用题中,如果把条件或问题由原来的叙述形式转化为另一种叙述形式,而不改变原来条件或问题的含义,这种思考方法就是转化法。本策略就是采用转化单位“1”,解决这类问题。
策略三 假设法
有些分数应用题,数量关系比较隐蔽,这时,可根据题意进行假设,改变题目的某个条件,从而简化条件使数量关系明朗化。
【例3】一辆摩托车从甲地开往乙地,每小时行40千米,返回时每小时行60千米。求这辆摩托车往返的平均速度。
解析:要求这辆摩托车往返的平均速度,就必须知道往返的总路程和往返的总时间。题中没有给出甲乙两地的路程,可以把路程假设为“1”,那么往返的时间分别为1/40和1/60,再根据“总路程÷总时间=平均速度”就可以列算式为2÷(1/40+1/60)=48(千米 / 小时)。
策略四 还原法
还原就是从题目的问题或结果出发,按它变化的相反方向一步一步进行逆向推理,逐步靠拢条件,直至这些条件是已知的,那么再倒回去,就能求得所求的结果了。
【例4】小明每分钟吹一次肥皂泡,每次恰好吹出100个。肥皂泡吹出之后,经过一分钟有一半破了,经过两分钟还有1/20没有破,经过两分半钟肥皂泡全部破了。小明在第20次吹出100个新的肥皂泡的时候,没有破的肥皂泡共有多少个?
解析:运用逆推思维解答,即小明吹第20次时,那第19次吹的肥皂泡还剩下一半没有破裂,第18次吹的肥皂泡还剩余1/20,第17次吹的肥皂泡全部破了。这样小明在第20次吹出100个新的肥皂泡时,没有破裂的肥皂泡共有100×