2021年浙江省杭州市中考数学试卷
一、选择题:本大题有10个小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.﹣(﹣2021)=( )
A.﹣2021 B.2021 C.﹣ D.
2.“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜记录.数据10909用科学记数法可表示为( )
A.0.10909×105 B.1.0909×104
C.10.909×103 D.109.09×102
3.因式分解:1﹣4y2=( )
A.(1﹣2y)(1+2y) B.(2﹣y)(2+y)
C.(1﹣2y)(2+y) D.(2﹣y)(1+2y)
4.如图,设点P是直线l外一点,PQ⊥l,点T是直线l上的一个动点,连结PT,则( )
A.PT≥2PQ B.PT≤2PQ C.PT≥PQ D.PT≤PQ
5.下列计算正确的是( )
A.=2 B.=﹣2 C.=±2 D.=±2
6.某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则( )
A.60.5(1﹣x)=25 B.25(1﹣x)=60.5
C.60.5(1+x)=25 D.25(1+x)=60.5
7.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )
A. B. C. D.
8.在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3),发现这些图象对应的函数表达式各不相同,其中a的值最大为( )
A. B. C. D.
9.已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;③以点A为圆心,AB长为半径作弧;④过点E作EP⊥AB于点P,则AP:AB=( )
A.1: B.1:2 C.1: D.1:
10.已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是( )
A.y1=x2+2x和y2=﹣x﹣1 B.y1=x2+2x和y2=﹣x+1
C.y1=﹣和y2=﹣x﹣1 D.y1=﹣和y2=﹣x+1
二、填空题:本大题有6个小题,每小题4分,共24分。
11.(4分)计算:sin30°= .
12.(4分)计算:2a+3a= .
13.(4分)如图,已知⊙O的半径为1,点P是⊙O外一点,T为切点,连结OT .
14.(4分)现有甲、乙两种糖果的单价与千克数如下表所示.
甲种糖果
乙种糖果
单价(元/千克)
30
20
千克数
2
3
将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 元/千克.
15.(4分)如图,在直角坐标系中,以点A(3,1),AC,AD(1,1),点C(1,3),点D(4,4)(5,2),则∠BAC ∠DAE(填“>”、“=”、“<”中的一个).
16.(4分)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把🔺DCE沿直线DE 折叠,使点C落在对角线AC上的点F处,连接DF,EF,则∠DAF= 度.
三、解答题:本大题有7个小题,共66分。解答应写出文字说明、证明过程或验算步骤。
17.(6分)以下是圆圆解不等式组的解答过程:
解:由①,得2+x>﹣1,
所以x>﹣3.
由②,得1﹣x>2,
所以﹣x>1,
所以x>﹣1.
所以原不等式组的解是x>﹣1.
圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.
18.(8分)为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组(每一组不含前一个边界值,含后一个边界值).
某校某年级360名学生一分钟跳绳次数的频数表
组别(次)
频数
100~130
48
13