高 三 数 学
高考模拟试卷
一、选择题
1、已知集合P={(x,y)||x|+|y|=1},Q={(x,y)|x2+y2≤1},则( )
A、P Q B、P=Q C、P Q D、PQ=Q
2、用一个平面去截正方体,所得截面不可能是( )
A、六边形 B、菱形 C、梯形 D、直角三角形
3、下列命题中,正确的是( )
A、两个单位向量的数量积为1
B、若a·b=a·c;且a≠0;则b=c
C、若b⊥c,则(a+c)·b=a·b
D、若9a2=4b2,则3a=2b
4、已知(2x2+)n(n∈N,n≥1)的展开式中含有常数,则n的最小值是( )
A、4 B、5 C、9 D、10
5、设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生但A不发生的概率要同,则事件A发生的概率P(A)是( )
A、 B、 C、 D、
6、等差数列{an}前n项和为Sn,满足S20=S40,则下列结论中正确的是( )
A、S30是Sn中的最大值 B、S30是Sn中的最小值
C、S30=0 D、S60=0
7、对函数f(x)=a2+bx+c(a≠0)作x=h(t)的代换,则不改变函数f(x)值域的代换是( )
A、h(t)=10t B、h(t)=t2 C、h(t)=sint D、h(t)=log2t
8、样本a1,a2,a3,…,a10的平均数为,样本b1,b2,…,b10的平均数为,那么样本a1,b1,a2,b2,a3,b3,…,a10,b10的平均数是( )
A、+ B、(+) C、2(+) D、(+)
9、已知点A为双曲线x2-y2=1的顶点,点B和点C在双曲线的同一分支上,且A与B在直线y=x的异侧,△ABC的面积是( )
A、 B、 C、 D、
10、ABCD-A1B1C1D1单位正方体,黑白两个蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”。白蚂蚁爬地的路线是AA1→A1D1→……,黑蚂蚁爬行的路线是AB→BB1→……,它们都遵循如下规则:所爬行的第i+2与第I段所在直线必须是异面直线(其中i是自然数)。设白,黑蚂蚁都走完2003段后各停止在正方体的某个顶点处,这时黑,白两蚂蚁的距离是( )
A、1 B、 C、 D、0
11、函数f(x)=|2sinx+3cosx|-|2sinx-3cosx|是( )
A、最小正周期为2π的奇函数 B、最小正周期为2π的偶函数
C、最小正周期为π的奇函数 D、最小正周期为π的偶函数
12、有一块“缺角矩形”木板ABCDE,其尺寸如图所示。欲用此木板锯成一块规则长方形木板,以下四种方案中哪种锯得的面积最大( )
二、填空题
13、若tan() EMBED Equation.3 ,则tan2α的值是 .
14、以原点为顶点,以椭圆C: EMBED Equation.3 的左准为准线的抛物线交椭圆C的右准线交于A、B两点,则|AB|= 。
15、an=6n-4(n=1,2,3,4,5,6)构成集合A,bn=2n-1(n=1,2,3,4,5,6)构成集合B,任取x∈A∪B,则x∈A∩B的概率是 。
16、下列两图是某县农村养鸡行业发展规模的统计结果,那么,此县养鸡只数最多的那年存有鸡 万只。
三、解答题
17、求函数 EMBED Equation.3 的单调区间,并求f(sinx)的最大值。
18、数列{an}共有k项(k为定值),它的前n项和Sn=2n2+n(1≤n≤k,n∈N),现从k项中抽取一项(不抽首项、末项),余下的k-1项的平均值是79。
(1)求数列{an}的通项。
(2)求出k的值并指出抽取的第几项。
19、如图,在直三棱锥ABC