365文库
登录
注册
2

初中奥数试题

180阅读 | 6收藏 | 10页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
初中奥数试题第1页
初中奥数试题第2页
初中奥数试题第3页
初中奥数试题第4页
初中奥数试题第5页
初中奥数试题第6页
初中奥数试题第7页
初中奥数试题第8页
初中奥数试题第9页
初中奥数试题第10页
福利来袭,限时免费在线编辑
转Pdf
right
1/10
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
相见如冰 上传于:2024-05-19
2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值. 3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围. 4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值. 5.已知方程组 有解,求k的值. 6.解方程2|x+1|+|x-3|=6. 7.解方程组 8.解不等式||x+3|-|x-1||>2. 9.比较下面两个数的大小: 10.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4, 求u=3x-2y+4z的最大值与最小值. 11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式. 19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由. 20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸? 21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1). 22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有 23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人? 24.求不定方程49x-56y+14z=35的整数解. 25.男、女各8人跳集体舞. (1)如果男女分站两列; (2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴. 问各有多少种不同情况? 26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152? 27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度. 28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天? 29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度. 30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元? 31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少? 32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱? 33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益? 34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲? 35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克. (1)试用新合金中第一种合金的重量表示第二种合金的重量; (2)求新合金中含第二种合金的重量范围; (3)求新合金中含锰的重量范围. 答案 2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以 原式=-b+(a+b)-(c-b)-(a-c)=b. 3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时, |x+m|+|x-n|=x+m-x+n=m+n. 4.分别令x=1,x=-1,代入已知等式中,得 a0+a2+a4+a6=-8128. 5.②+③整理得 x=-6y, ④ ④代入①得 (k-5)y=0. 当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1. 故k=5或k=-1时原方程组有解. <x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有 ,所以应舍去. 7.由|x-y|=2得 x-y=2,或x-y=-2, 所以 由前一个方程组得 |2+y|+|y|=4. 当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3. 同理,可由后一个方程组解得 所以解为 解①得x≤-3;解②得 -3<x<-2或0<x≤1; 解③得x>1. 所以原不等式解为x<-2或x>0.9.令a=99991111,则 于是 显然有a>1,所以A-B>0,即A>B. 10.由已知可解出y和z 因为y,z为非负实数,所以有 u=3x-2y+4z 11. 所以商式为x2-3x+3,余式为2x-4. 又 S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG, 所以 S△EFGD=3S△BFD. 设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以 S△CEG=S△BCEE, 从而 所以 SEFDC=3x+2x=5x, 所以 S△BFD∶SEFDC=1∶5. 由已知AC‖KL,所以S△ACK=S△ACL,所以 即 KF=FL. +b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾! 20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸. 21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1). 22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有 (α+1)(β+1)(γ+1)=75. 于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时 (α+1)(β+1)=25. 所以 故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·52 23.设凳子有x只,椅子有y只,由题意得 3x+4y+2(x+y)=43, 即 5x+6y=43. 所以x=5,y=3是唯一的非负整数解.从而房间里有8个人. 24.原方程可化为 7x-8y+2z=5. 令7x-8y=t,t+2z=5.易见x=7t,y=
tj