初中总复习教学质量检测数学试卷
(试卷满分:150分 考试时间:120分钟)
准考证号 姓名 座位号
注意事项:
1.全卷三大题,25小题,试卷共4页,另有答题卡.
2.答案必须写在答题卡上,否则不能得分.
3.可以直接使用2B铅笔作图.
一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)
1.计算-1+2,结果正确的是
A. 1 B. -1 C. -2 D . -3
2.抛物线y=ax2+2x+c的对称轴是
A. x=- eq \f(1,a) B. x=- eq \f(2,a) C. x= eq \f(1,a) D . x= eq \f(2,a)
3.如图1,已知四边形ABCD,延长BC到点E,则∠DCE的同位角是
A. ∠A B. ∠B
C. ∠DCB D .∠D
4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是
A.到学校图书馆调查学生借阅量
B.对全校学生暑假课外阅读量进行调查
C.对初三年学生的课外阅读量进行调查
D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查
5.若967×85=p,则967×84的值可表示为
A. p-1 B. p-85 C. p-967 D. eq \f(85,84) p
6. 如图2,在Rt△ACB中,∠C=90°,∠A=37°,AC=4,
则BC的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. 2.4 B. 3.0 C. 3.2 D . 5.0
7. 在同一条直线上依次有A,B,C,D四个点,若CD-BC=AB,则下列结论正确的是
A. B是线段AC的中点 B. B是线段AD的中点
C. C是线段BD的中点 D. C是线段AD的中点
8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x名同学,
可列不等式9x+7<11x,则横线上的信息可以是
A.每人分7本,则可多分9个人
B. 每人分7本,则剩余9本
C.每人分9本,则剩余7本
D. 其中一个人分7本,则其他同学每人可分9本
9. 已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是
A. 因为a>b+c,所以a>b,c<0 B. 因为a>b+c,c<0,所以a>b
C. 因为a>b,a>b+c,所以c<0 D . 因为a>b,c<0,所以a>b+c
10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ(如图3):
(1)测量者在水平线上的A处竖立一根竹竿,沿射线QA方向走到M处,测得山顶P、竹竿顶点B及M在一条直线上;
(2)将该竹竿竖立在射线QA上的C处,沿原方向继续
走到N处,测得山顶P,竹竿顶点D及N在一条直线上;
(3)设竹竿与AM,CN的长分别为l,a1,a2,可得公式:
PQ= eq \f(d·l, a2-a1)+l.
则上述公式中,d表示的是
A.QA的长 B. AC的长 C.MN的长 D.QC的长
二、填空题(本大题有6小题,每小题4分,共24分)
11.分解因式: m2-2m= .
12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的
概率是 .
13.如图4,已知AB是⊙O的直径,C,D是圆上两点,∠CDB=45°,
AC=1,则AB的长为 .
14. A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A
型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等.设B型机器人每小时
搬运xkg化工原料,根据题意,可列方程__________________________.
15.已知a+1=20002+20012,计算: eq \r(2a+1)= .
16.在△ABC中,AB=AC.将△ABC沿∠B的平分线折叠,使点A落在BC边上的点D处,
设折痕交AC边于点E,继续沿直线DE折叠,若折叠后,BE与线段DC相交,且交点不
与点C重合,则∠BAC的度数应满足的条件是 .
三、解答题(本大题有9小题,共86分)
17.(本题满分8分)
解方程:2(x-1)+1=x.
18.(本题满分8分)
如图5,直线EF分别与AB,CD交于点A,C,若AB∥CD,
CB平分∠ACD,∠EAB=72°,求∠ABC的度数.
19.(本题满分8分)
如图6,平面直角坐标系中,直线l经过第一、二、四象限,
点A(0,m)在l上.
(1)在图中标出点A;
(2)若m=2,且l过点(-3,4),求直线l的表达式.
20.(本题满分8分)
如图7,在□ABCD中,E是BC延长线上的一点,
且DE=AB,连接AE,BD,证明AE=BD.
21.(本题满分8分)
某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.
项目
交通工具
交通工具使用燃料
交通工具维修
市内公共交通
城市间交通
占交通消费的
比例
22%
13%
5%
p
26%
相对上一年的价格的涨幅
1.5%
m%
2%
0.5%
1%
(1)求p的值;
(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.
22.(本题满分10分)
如图8,在矩形ABCD中,对角线AC,BD交于点O,
(1)AB=2,AO= eq \r(5),求BC的长;
(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE= eq \f( eq \r(2),2)BD,
求∠DCE的度数.
23.(本题满分11分)
已知点A,B在反比例函数y= eq \f(6,x)(x>0)的图象上,且横坐标分别为m,n,过点A,B分别向y轴、x轴作垂线段,两条垂线段交于点C,过点A,B分别作AD⊥x轴于D,作BE⊥y轴于E.
(1)若m=6,n=1,求点C的坐标;
(2)若m(n-2)=3,当点C在直线DE上时,求n的值.
24.(本题满分11分)
已知AB=8,直线l与AB平行,且距离为4,P是l上的动点,过点P作PC ⊥AB交线段AB于点C,点C不与A,B重合,过A,C,P三点的圆与直线PB交于点D.
(1)如图9,当D为PB的中点时,求AP的长;
(2)如图10,圆的一条直径垂直AB于点E,且与AD交于点M.当ME的长度最大时,
判断直线PB是否与该圆相切?并说明理由.
25.(本题满分14分)
已知二次函数y=ax2+bx+t-1,t<0,
(1)当t=-2时,
① 若函数图象经过点(1,-4),(-1,0),求a,b的值;
② 若2a-b=1,对于任意不为零的实数a,是否存在一条直线y=kx+p(k≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.
(2)若点A(-1,t),B(m,t-n)(m>0,n>0)是函数图象上的两点,且
S△AOB= eq \f(1,2)n-2 t,当-1≤x≤m时,点A是该函数图象的最高点,求a的取值范围.
2018年厦门市九科教学质量检测
数学参考答案
说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.
一、选择题(本大题共10小题,每小题4分,共40分)
题号
1
2
3
4
5
6
7
8
9
10
选项
A
A
B
D
C
B
D
C
D
B
二、填空题(本大题共6小题,每题4分,共24分)
11. m(m-2). 12. eq \f(1,2). 13. eq \r(2). 14. eq \f(900,x+30)= eq \f(600,x).
15. 4001. 16.100°<∠BAC<180°.
三、解答题(本大题有9小题,共86分)
17.(本题满分8分)
解:2x-2+1=x.…………………………4分
2x-x=2-1.…………………………6分
x=1.…………………………8分
18.(本题满分8分)
解法一:如图1∵ AB∥CD,
∴ ∠ACD=∠EAB=72°.…………………………3分
∵ CB平分∠ACD,
∴ ∠BCD= eq \f(1,2)∠ACD=36°. …………………………5分
∵ AB∥CD,
∴ ∠ABC=∠BCD=36°. …………………………8分
解法二:如图1∵ AB∥CD,
∴ ∠ABC=∠BCD. …………………………3分
∵ CB平分∠ACD,
∴ ∠ACB=∠BCD. …………………………5分
∴ ∠ABC=∠ACB.
∵ ∠ABC+∠ACB=∠EAB,
∴ ∠ABC= eq \f(1,2)∠EAB=36°. …………………………8分
19.(本题满分8分)
(1)(本小题满分3分)如图2;…………………………3分
(2)(本小题满分5分)
解:设直线l的表达式为y=kx+b(k≠0),…………………………4分
由m=2得点A(0,2),
把(0,2),(-3,4)分别代入表达式,得
eq \b\lc\{( eq \a\al\co1\vs8(b=2,,-3k+b=4.))
可得 eq \b\lc\{( eq \a\al\co1\vs8(b=2,,k=- eq \f(2,3) .))…………………………7分
所以直线l的表达式为y=- eq \f(2,3)x+2. …………………………8分
20.(本题满分8分)
证明:如图3∵ 四边形ABCD是平行四边形,
∴ AB∥DC,AB=DC.………………………… 2分
∵ DE=AB,
∴ DE=DC.
∴ ∠DCE=∠DEC.…………………………4分
∵ AB∥DC,
∴ ∠ABC=∠DCE. …………………………5分
∴ ∠ABC=∠DEC. …………………………6分
又∵ AB=DE,BE=EB,
∴ △ABE≌△DEB. …………………………7分
∴ AE=BD. …………………………8分
21.(本题满分8分)
(1)(本小题满分3分)
解:p=1-(22%+13%+5%+26%)…………………………2分
=34%. …………………………3分
(2)(本小题满分5分)
解:由题意得
eq \f(22%×1.5%+13%×m%+5%×2%+34%×0.5%+26%×1%,22%+13%+5%+34%+26%)=1.25%. …………………7分
解得m=3. …………………………8分
22.(本题满分10分)
(1)(本小题满分4分)
解:如图4∵四边形ABCD是矩形,
∴ ∠ABC=90°,AC=2AO=2eq \r(5).………………………2分
∵ 在Rt△ACB中,
∴ BC=eq \r(AC2-AB2) ………………………3分
=4.………………………4分
(2)(本小题满分6分)
解:如图4∵ 四边形ABCD是矩形,
∴ ∠DCB=90°,BD=2OD,AC=2OC,AC=BD.
∴ OD=OC=eq \f(1,2)BD.
∵ ∠DBC=30°,
∴ 在Rt△BCD中,∠BDC=90°-30°=60°,
CD=eq \f(1,2)BD.
∵ CE=CD,
∴ CE=eq \f(1,2)BD.………………………6分
∵ OE=eq \f(eq \r(2),2)BD,
∴ 在△OCE中,OE2=