第五章 相交线与平行线
1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行。
2、互为邻补角:
(1)定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。
(2)性质:从位置看:互为邻角; 从数量看:互为补角;
3、互为对顶角:
(1)定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角。
(2)性质:对顶角相等
垂直
4、垂直:
(1)定义:垂直是相交的一种特殊情形。当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相垂直。它们交点叫做垂足。其中的一条直线叫做另一条直线的垂线。
(2)性质:过一点有且只有一条直线和已知直线垂直。
(3)表示方法:用符号“⊥”表示垂直。
5、任何一个“定义”既可以做判定,又可以做性质。
6、垂线是一条直线,垂线段是垂线的一部分。
7、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
8、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度。 两点间的距离:连接两点间的线段的长度。
“两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况。
同位角、内错角、同旁内角
9、内错角的定义:两个角都在截线的两侧,都在被截直线之间。这样的两个角叫做内错角。
10、同位角的定义:两个角都在截线的同侧,都在被截直线的同一方。这样的两个角叫做同位角。
11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间。这样的两个角叫做同旁内角。
相交线、平行线
12、截线与被截直线的定义:截线就是截断两条同一方向直线的直线,被截直线就是被截线所截断的两条同一方向的直线。
13、相交线的定义:在平面内有一个公共交点的两条直线,叫做相交线。
14、平行线:
(1)定义:在平面内不相交的两条直线,叫做平行线。 (2)表示方法:用符号“∥”表示平行。
(3)公理:经过直线外一点,有且只有一条直线与已知直线平行(这个公理说明了平行线的存在性和唯一性)。
(4)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
(5)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线互相平行(简单说成:同位角相等,两直线平行)。
判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线互相平行(简单说成:内错角相等,两直线平行)。
判定3:两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线互相平行(简单说成:同旁内角相等,两直线平行)。
判定4:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。
(6)性质1:如果两条平行直线被第三条直线所截,那么同位角相等(简单说成:两直线平行,同位角相等)。
性质2:如果两条平行直线被第三条直线所截,那么内错角相等(简单说成:两直线平行,内错角相等)。
性质3:如果两条平行直线被第三条直线所截,那么同旁内角相等(简单说成:两直线平行,同旁内角相等)。
15、命题
(1)定义:表示判断一件事情的语句,叫做命题。
(2)分类:命题分为 真命题:正确的命题。 假命题:错误的命题。
(3)组成:命题是由条件(题设)和结论两部分组成。条件(