365文库
登录
注册
2

湖北省黄冈市中考数学试卷.doc

284阅读 | 12收藏 | 18页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
湖北省黄冈市中考数学试卷.doc第1页
湖北省黄冈市中考数学试卷.doc第2页
湖北省黄冈市中考数学试卷.doc第3页
湖北省黄冈市中考数学试卷.doc第4页
湖北省黄冈市中考数学试卷.doc第5页
湖北省黄冈市中考数学试卷.doc第6页
湖北省黄冈市中考数学试卷.doc第7页
湖北省黄冈市中考数学试卷.doc第8页
湖北省黄冈市中考数学试卷.doc第9页
湖北省黄冈市中考数学试卷.doc第10页
湖北省黄冈市中考数学试卷.doc第11页
湖北省黄冈市中考数学试卷.doc第12页
湖北省黄冈市中考数学试卷.doc第13页
湖北省黄冈市中考数学试卷.doc第14页
湖北省黄冈市中考数学试卷.doc第15页
湖北省黄冈市中考数学试卷.doc第16页
湖北省黄冈市中考数学试卷.doc第17页
湖北省黄冈市中考数学试卷.doc第18页
福利来袭,限时免费在线编辑
转Pdf
right
1/18
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
风都伤 上传于:2024-05-27
湖北省黄冈市中考数学试卷 一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的) 1.(3分)﹣的相反数是(  ) A.﹣ B.﹣ C. D. 2.(3分)下列运算结果正确的是(  ) A.3a3•2a2=6a6 B.(﹣2a)2=﹣4a2 C.tan45°= D.cos30°= 3.(3分)函数y=中自变量x的取值范围是(  ) A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<1 4.(3分)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为(  )  A.50° B.70° C.75° D.80° 5.(3分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=(  )  A.2 B.3 C.4 D.2 6.(3分)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为(  ) A.﹣1 B.2 C.0或2 D.﹣1或2   二、填空题(本题共8小题,每题小3分,共24分 7.(3分)实数16800000用科学记数法表示为   . 8.(3分)因式分解:x3﹣9x=   . 9.(3分)化简(﹣1)0+()﹣2﹣+=   . 10.(3分)则a﹣=,则a2+值为   . 11.(3分)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=   .  12.(3分)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为   . 13.(3分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为   cm(杯壁厚度不计).  14.(3分)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为   .   三、解答题(本题共10题,满分78分(x-2)≤8 15.(5分)求满足不等式组的所有整数解. 16.(6分)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克. 17.(8分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:  图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”. (1)被调查的总人数是   人,扇形统计图中C部分所对应的扇形圆心角的度数为   ; (2)补全条形统计图; (3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有   人; (4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率. 18.(7分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C. (1)求证:∠CBP=∠ADB. (2)若OA=2,AB=1,求线段BP的长.  19.(6分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B. (1)求k的值与B点的坐标; (2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.  20.(8分)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE. (1)求证△ABF≌△EDA; (2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.  21.(7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上. (1)求坡底C点到大楼距离AC的值; (2)求斜坡CD的长度.  22.(8分)已知直线l:y=kx+1与抛物线y=x2﹣4x. (1)求证:直线l与该抛物线总有两个交点; (2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积. 23.(9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z(元)与月份x(月)的关系如下表: x 1 2 3 4 5 6 7 8 9 10 11 12 z 19 18 17 16 15 14 13 12 11 10 10 10 (1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式; (2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式; (3)当x为何值时,月利润w有最大值,最大值为多少? 24.(14分)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动. (1)当t=2时,求线段PQ的长; (2)求t为何值时,点P与N重合; (3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.     湖北省黄冈市中考数学试卷 参考答案与试题解析   一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的) 1. 【解答】解:﹣的相反数是. 故选:C.   2. 【解答】解:A、原式=6a5,故本选项错误; B、原式=4a2,故本选项错误; C、原式=1,故本选项错误; D、原式=,故本选项正确. 故选:D.   3. 【解答】解:根据题意得到:, 解得x≥﹣1且x≠1, 故选:A.   4. 【解答】解:∵DE是AC的垂直平分线, ∴DA=DC, ∴∠DAC=∠C=25°, ∵∠B=60°,∠C=25°, ∴∠BAC=95°, ∴∠BAD=∠BAC﹣∠DAC=70°, 故选:B.   5. 【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5, ∴AE=CE=5, ∵AD=2, ∴DE=3, ∵CD为AB边上的高, ∴在Rt△CDE中,CD=, 故选:C.   6. 【解答】解:当y=1时,有x2﹣2x+1=1, 解得:x1=0,x2=2. ∵当a≤x≤a+1时,函数有最小值1, ∴a=2或a+1=0, ∴a=2或a=﹣1, 故选:D.   二、填空题(本题共8小题,每题小3分,共24分 7. 【解答】解:16800000=1.68×107. 故答案为:1.68×107.   8. 【解答】解:x3﹣9x, =x(x2﹣9), =x(x+3)(x﹣3).   9. 【解答】解:原式=1+4﹣3﹣3 =﹣1. 故答案为:﹣1.   10. 【解答】解:∵a﹣= ∴(a﹣)2=6 ∴a2﹣2+=6 ∴a2+=8 故答案为:8   11. 【解答】解:连接BD.  ∵AB是直径, ∴∠C=∠D=90°, ∵∠CAB=60°,AD平分∠CAB, ∴∠DAB=30°, ∴AB=AD÷cos30°=4, ∴AC=AB•cos60°=2, 故答案为2.   12. 【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7, ∵3<第三边的边长<9, ∴第三边的边长为7. ∴这个三角形的周长是3+6+7=16. 故答案为:16.   13. 【解答】解:如图:  将杯子侧面展开,作A关于EF的对称点A′, 连接A′B,则A′B即为最短距离,A′B===20(cm). 故答案为20.   14. 【解答】解:画树状图为:  共有12种等可能的结果数,满足a<0,b>0的结果数为4, 所以该二次函数图象恰好经过第一、二、四象限的概率==. 故答案为.   三、解答题(本题共10题,满分78分(x-2)≤8 15. 【解答】解:解不等式x﹣3(x﹣2)≤8,得:x≥﹣1, 解不等式x﹣1<3﹣x,得:x<2, 则不等式组的解集为﹣1≤x<2, 所以不等式组的整数解为﹣1、0、1.   16. 【解答】解:设订购了A型粽子x千克,B型粽子y千克, 根据题意,得, 解得. 答:订购了A型粽子40千克,B型粽子60千克.   17. 【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×=216°, 故答案为:50、216°; (2)B类别人数为50﹣(5+30+5)=10人, 补全图形如下:  (3)估计该校学生中A类有1800×10%=180人, 故答案为:180; (4)列表如下: 女1 女2 女3 男1 男2 女1 ﹣﹣﹣ 女2女1 女3女1 男1女1 男2女1 女2 女1女2 ﹣﹣﹣ 女3女2 男1女2 男2女2 女3 女1女3 女2女3 ﹣﹣﹣ 男1女3 男2女3 男1 女1男1 女2男1 女3男1 ﹣﹣﹣ 男2男1 男2 女1男2 女2男2 女3男2 男1男2 ﹣﹣﹣ 所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8, ∴被抽到的两个学生性别相同的概率为=.   18. 【解答】(1)证明:连接OB,如图, ∵AD是⊙O的直径, ∴∠ABD=90°, ∴∠A+∠ADB=90°, ∵BC为切线, ∴OB⊥BC, ∴∠O
tj