高中数学知识点考点例题解析
空间几何体
知识点:
1、空间几何体的结构
⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、长方体的对角线长;正方体的对角线长
3、球的体积公式:,球的表面积公式:
4、柱体,锥体,锥体截面积比:
5、空间几何体的表面积与体积
⑴圆柱侧面积;
⑵圆锥侧面积:
典型例题:
★例1:下列命题正确的是( )
A.棱柱的底面一定是平行四边形
B.棱锥的底面一定是三角形
C.棱柱被平面分成的两部分可以都是棱柱
D.棱锥被平面分成的两部分不可能都是棱锥
★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )
A 倍 B 倍 C 2倍 D 倍
★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( )
A.上部是一个圆锥,下部是一个圆柱
B.上部是一个圆锥,下部是一个四棱柱
C.上部是一个三棱锥,下部是一个四棱柱
D.上部是一个三棱锥,下部是一个圆柱
★★例4:一个体积为的正方体的顶点都在球面上,则球的表面积是
A. B. C. D.
二、填空题
★例1:若圆锥的表面积为平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.
★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.
点、直线、平面之间的位置关系
知识点:
1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
2、公理2:过不在一条直线上的三点,有且只有一个平面。
3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、公理4:平行于同一条直线的两条直线平行.
5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
6、线线位置关系:平行、相交、异面。
7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。
8、面面位置关系:平行、相交。
9、线面平行:
⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线线平行,则线面平行)。
⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简称线面平行,则线线平行)。
10、面面平行:
⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简称线面平行,则面面平行)。
⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平行,则线线平行)。
11、线面垂直:
⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。
⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(简称线线垂直,则线面垂直)。
⑶性质:垂直于同一个平面的两条直线平行。
12、面面垂直:
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,则面面垂直)。
⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。(简称面面垂直,则线面垂直)。
典型例题:
★例1:一棱锥被平行于底面的平面所截,若截面面积与底面面积之比是1:2,则此棱锥的高(自上而下)被分成两段长度之比为
A、1: EMBED Equation.3 B、1:4 C、1: EMBED Equation.3 D、1: EMBED Equation.3
★ 例2:已知两个不同平面 EMBED Equation.3 、 EMBED Equation.3 及三条不同直线a、b、c, EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 ,c与b不平行,则( )
A. EMBED Equation.3 且 EMBED Equation.3 与 EMBED Equation.3 相交 B. EMBED Equation.3 且 EMBED Equation.3
C. EMBED Equation.3 与 EMBED Equation.3 相