五年级长方体和正方体
专题简析
在数学竞赛中,有许多有关长方体、正方体的问题。解答稍复杂的立体图形问题要注意几点:
1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;
2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;
3.求一些不规则的物体体积时,可以通过变形的方法来解决。
例题1 一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)
分析 (1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80×2=160(立方厘米);
(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。因此,此零件的表面积就是(10×6+10×4+2×2)×2=232(平方厘米)。
想一想:你还能用别的方法来计算它的体积吗?
练习一
1.一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图)