第三节 等差数列、等比数列的判断与证明
【基础梳理】
等差数列的判定方法
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;
(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N*)成立;
(3)通项公式法:验证an=pn+q;
(4)前n项和公式法:验证Sn=An2+Bn.
二、等比数列的判定方法
(1)定义法:若eq \f(an+1,an)=q(q为非零常数,n∈N*)或eq \f(an,an-1)=q(q为非零常数且n≥2,n∈N*),则{an}是等比数列.
(2)等比中项公式法:若数列{an}中,an≠0且aeq \o\al(2,n+1)=an·an+2(n∈N*),则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列.
(4)前n项和公式法:若数列{an}的前n项和Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an}是等比数列.
【考点突破】
考点一 等差数列的判定与证明
例、数列{an}满足an+1=eq \f(an,2an+1),a1=1.