数学选修2-2知识点总结
一、导数
1.函数的平均变化率为
注1:其中是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.
3.函数的平均变化率的几何意义是割线的斜率;
函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;
5、常见的函数导数
函数
导函数
0
6、常见的导数和定积分运算公式:若,均可导(可积),则有:
和差的导数运算
积的导数运算
特别地:
商的导数运算
特别地:
复合函数的导数
微积分基本定理
(其中)
和差的积分运算
特别地:
积分的区间可加性
用导数求函数单调区间的步骤:
①求函数f(x)的导数
②令>0,解不等式,得x的范围就是递增区间.
③令<0,解不等式,得x的范围,就是递减区间;
[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:
(1)确定函数的定义域。
(2) 求函数f(x)的导数
(3)求方程=0的根
(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查 EMBED Equation.3 在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值
8.利用导数求函数的最值的步骤:求 EMBED Equation.DSMT4 在 EMBED Equation.DSMT4 上的最大值与最小值的步骤如下:
⑴求 EMBED Equation.DSMT4 在 EMBED Equation.DSMT4 上的极值;
⑵将 EMBED Equation.DSMT4 的各极值与 EMBED Equation.DSMT4 比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;
9.求曲边梯形的思想和步骤:分割 EMBED Equation.3 近似代替 EMBED Equation.3 求和 EMBED Equation.3 取极限 (“以直代曲”的思想)
10.定积分的性质
根据定积分的定义,不难得出定积分的如下性质:
性质1 EMBED Equation.3
性质5 若 EMBED Equation.3 ,则 EMBED Equation.3
①推广: EMBED Equation.3
②推广: EMBED Equation.3
11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.
( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x轴上方的图形面积;
(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;
当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方