二十四圆锥曲线与方程考点梳理一椭圆1椭圆的定义平面内与两个定点的距离之和为常数的动点的轨迹叫椭圆其中两个定点叫椭圆的焦点1当时的轨迹为椭圆2当时的轨迹不存在3当时的轨迹为以为端点的线段2椭圆的方程与几何性质标准方程性质参数关系焦点焦距范围顶点对称性关于x轴y轴和原点对称离心率准线3点与椭圆的位置关系1当时点在椭圆外2当时点在椭圆内3当时点在椭圆上4直线与椭圆的位置关系直线与椭圆相交直线与椭圆相切直线与椭圆相离二双曲线1双曲线的定义平面内与两个定点的距离之差的绝对值为常数的动点的轨迹叫双曲线其中两个定点叫双曲线的焦点1当时的轨迹为双曲线2当时的轨迹不存在3当时的轨迹为以为端点的两条射线2双曲线的标准方程与几何性质标准方程性质焦点焦距范围顶点对称性关于x轴y轴和原点对称离心率准线渐近线3与双曲线共渐近线的双曲线系方程为4等轴双曲线的渐近线方程为离心率为三抛物线1抛物线的定义平面内到定点的距离与到定直线的距离相等的点的轨迹叫抛物线其中定点叫抛物线的焦点定直线叫抛物线的准线2抛物线的标准方程类型及其几何性质标准方程图形焦点准线范围对称轴轴轴顶点00离心率3抛物线的焦半径焦点弦的焦半径的焦半径过