365文库
登录
注册
2

圆的知识点小结.doc

214阅读 | 7收藏 | 3页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
圆的知识点小结.doc第1页
圆的知识点小结.doc第2页
圆的知识点小结.doc第3页
福利来袭,限时免费在线编辑
转Pdf
right
1/3
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
郎有情妾有意 上传于:2024-07-07
圆的知识点小结 1.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理” “弧径定理”“中垂定理”. 几何表达式举例: ∵ CD过圆心 ∵CD⊥AB 2.平行线夹弧定理: 圆的两条平行弦所夹的弧相等. 几何表达式举例: 3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”; “等弦对等角”; “等角对等弧”; “等弧对等角”; “等弧对等弦”;“等弦对等(优,劣)弧”; “等弦对等弦心距”;“等弦心距对等弦”. 几何表达式举例: (1) ∵∠AOB=∠COD ∴ AB = CD (2) ∵ AB = CD ∴∠AOB=∠COD 4.圆周角定理及推论: (1)圆周角的度数等于它所对的弧的度数的一半; (2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”; (4)“直径对直角”“直角对直径”;(如图) (5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)   (1) (2)   (3) (4) 几何表达式举例: (1) ∵∠ACB=∠AOB ∴ …………… (2) ∵ AB是直径 ∴ ∠ACB=90° (3) ∵ ∠ACB=90° ∴ AB是直径 (4) ∵ CD=AD=BD ∴ ΔABC是RtΔ 5.圆内接四边形性质定理: 圆内接四边形的对角互补, 并且任何一个外角都等于 它的内对角. 几何表达式举例: ∵ ABCD是圆内接四边形 ∴ ∠CDE =∠ABC ∠C+∠A =180° 几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题) 一 基本概念: 圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高 三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、扇形、圆锥不、侧面积、全面积 二 定理: 不在一直线上的三个点确定一个圆.  SHAPE \* MERGEFORMAT  2.任何正多边形都有一个外接圆和一个内切圆,这两
tj