二年级找规律(三)
数学家看问题,总想找规律.我们学数学,也要向他们学习。找规律,要从简单的情况着手,仔细观察,得到启示,大胆猜想,找出一般规律,还要进行验证,最后还需要证明(在小学阶段不要求同学们进行证明)。
例1 沿直尺的边缘把纸上的两个点连起来,这个图形就叫做线段。这两个点就叫线段的端点,如图8—1—1所示。不难看出,线段也可以看成是直线上两点间的部分。如果一条直线上标出11个点,如图8—1—2所示,任何两点间的部分都是一条线段,问共有多少条线段。
解:先从简单的情况着手。
(1)画一画,数一数:(见图8—1—3)
(2)试着分析:
2个点,线段条数:1=1
3个点,线段条数:3=2+1
4个点,线段条数:6=3+2+1
5个点,线段条数:10=4+3+2+1
(3)大胆猜想:一条直线上有若干点时线段的条数总是从1开始的一串自然数相加之和,其中最大的自然数比点数小1。
(4)进行验证:对于更多点的情况,对猜想进行验证,看猜想是否正确,如果正确,就增加了对猜想的信心。如:
6个点时:对不对?
——对。见图 8—1—4。
线段条数:5+4+3+2+1=15(条)。
(5)应用规律:应用猜想到的规律解决更复杂的问题。
当直线上有11个点时,线段的条数应是:
10+9+8+7+6+5+4+3+2+1=55(条)。
例2 如图8—2中(1)~(5)所示两条直线相交只有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,……那么,11条直线相交最多有多少交点?
解:从简单情况着手研究:
(1)画一画、数一数
图8-2
(2)试着分析:
直线条数 最多交点数
1 0
2 1=1
3 3=2+1
4 6=3+2+1
5 10=4+3+2+1
(3)大胆猜想:若干条直线相交时,最多的交点数是从1开始的一串自然数相加之和,其中最大的自然数比直线条数小1。
(4)进行验证:见图8—3。取6条直线相交,画一画,数一数,看一看最多交点个数与猜想的是否一致,若相符,则更增强了对猜想的信心。
INCLUDEPICTURE "ada99:10841_SR.HTM63_201.jpg" \* MERGEFORMATINET
用猜想的算法进行计算:最多交点数应是
5+4+3+2+1=15(个)。
(5)应用规律:应用猜想到的规律解决更复杂的