365文库
登录
注册
2

《为什么要证明》参考教案1.doc.doc

157阅读 | 7收藏 | 8页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
《为什么要证明》参考教案1.doc.doc第1页
《为什么要证明》参考教案1.doc.doc第2页
《为什么要证明》参考教案1.doc.doc第3页
《为什么要证明》参考教案1.doc.doc第4页
《为什么要证明》参考教案1.doc.doc第5页
《为什么要证明》参考教案1.doc.doc第6页
《为什么要证明》参考教案1.doc.doc第7页
《为什么要证明》参考教案1.doc.doc第8页
福利来袭,限时免费在线编辑
转Pdf
right
1/8
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
嗔痴 上传于:2024-06-14
1.为什么要证明 一、学生知识状况分析 学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础. 学生活动经验基础: 在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助. 二、教学任务分析 学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《你能肯定吗》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。因此,本课时的教学目标是: 1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否. 2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识. 3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等. 三、教学过程分析 本节课的教学思路为:验证活动(1)——猜想并验证活动(2)——猜想并验证活动(3)——经验总结——学生练习——课堂小结——巩固练习 第一环节:验证活动(1) 活动内容1:图中两条线段a、b的长度相等吗?四边形是正方形吗?请先观察,再设法检验你观察到的结论.  可以用直尺测量一下,发现a=b;这个四边形是正方形. 活动内容2: 代数式n2-n+11的值是质数吗?取n=0,1,2,3,4,5试一试,你能否由此得到结论:对于所有自然数n, n2-n+11的值都是质数?与同伴交流. 参考答案:列表归纳为 n 0 1 2 3 4 5 6 7 8 9 10 11 … n2-n+11 11 11 13 17 23 31 41 53 67 83 101 121 是否为质数 是 是 是 是 是 是 是 是 是 是 是 不是 活动目的: 对现在结论进行验证,让学生感受到知识有时具有一定的迷惑性(欺骗性),从而对不完全归纳的合理性产生怀疑,为下一步的学习提供必要的精神准备. 注意事项: 学生通过列表归纳,根据自己以往的经验判断,在n=10以前都一直认为n2-n+11是一个质数,但当n=10时,找到了一个反例,进而发现不能根据少数几个现象轻易肯定某个数学结论的正确性. 第二环节:猜想并验证活动(2) 活动内容: 如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗? 参考答案:设赤道周长为c,铁丝与地球赤道之间的间隙为 :  它们的间隙不仅能放进一个红枣,而且也能放进一个拳头. 活动目的: 通过理性的计算,验证了很难想像到的结论,让学生产生思维上的碰撞,进而对自己的直观感觉产生怀疑,再次为论证的合理性提供素材. 注意事项: 要充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生,这样就达不到预想的要求,不能让学生留下深刻的印象. 第三环节:猜想并验证活动(3) 活动内容: 如图,在△ABC中,点D,E分别是AB,AC的中点,连接DE.DE于BC有怎样的位置关系和数量的关系?请你先猜一猜,再设法检验你的猜想,您呢过肯定你的结论对所有的△ABC都成立吗?与同伴进行交流.  参考答案: 过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (ASA) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 活动目的: 通过对图形的直观感受得出结论,但要使学生清楚地知道对几何结论的验证,通常是用严谨的逻辑推理来论述. 注意事项: 让学生大胆地进行预测,但要让学生说清理由,让学生了解几何证明的必要性. 第四环节:归纳与总结 活动内容: ① 通过以上数学活动,使学生对每一个问题的结论的正确性有了怀疑,从而知道了由观察、猜想等渠道得到的结论还必须经过有效的证明才能对其进行肯定.也即:要判断一个数
tj