证明角平分线的三种途径
从一个角的顶点引一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.几何学习中,关于角平分线的证明问题屡见不鲜.解答它们,既可以根据定义,又可以利用角平分线的判定定理,还可以借助等腰三角形的性质.
一、考虑要证明的角平分线把角分成两个相等的角,根据定义证明
例1.如图,E 、F分别为△ABC的边AB及边CA的延长线上的点,且AE=AF,AD∥EF.求证:AD平分∠BAC.
简析:要证明AD平分∠BAC,只要证明∠1=∠2.
证明:在△AEF中,
因为AE=AF,
所以∠AEF=∠F.
因为AD∥EF,
所以∠1=∠AEF,∠2=∠F.
所以∠1=∠2.
所以AD平分∠BAC.
二、考虑要证明的角平分线上某一点到角的两边距离相等,利用角平分线的判定定理证明
例2.如图,在△ABC中,外角∠BCE和外角∠CBD的平分线CF、BF相交于点F.求证:AF平分∠BAC.
简析:要证明AF平分∠BAC,只要证明点F到∠BAC的两边AB和AC的距离相等.
证明:过F作FM⊥AB于点M,FN⊥BC于点N,FP⊥AC于点P.
因为BF平分∠CBD,
所以FM=FN.
因为CF平分∠BCE,
所以FP=FN.
所以FM=FP.
所以点F到∠BAC的两边AB和AC的距离相等.
所以点F在∠BAC的平分线上.
所以AF平分∠BAC.
三、考虑