365文库
登录
注册
2

《证明的必要性》参考教案.doc

218阅读 | 10收藏 | 2页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
《证明的必要性》参考教案.doc第1页
《证明的必要性》参考教案.doc第2页
福利来袭,限时免费在线编辑
转Pdf
right
1/2
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
如初如故 上传于:2024-06-08
8.2 证明的必要性 教学目标: 1、知识目标:经历观察、验证、归纳等过程,使我们对由这些方法所得到的结论产生怀疑,从此激发我们的好奇心理,认识证明的必要性,体会检验数学结论的常用方法:实验验证、举出反例、推理等。 2、能力目标:提高推理意识 教学重难点:体会证明的必要性 教具准备:投影仪、投影片 教学方法:引导探究、合作交流 教学过程: (一)创设情境,提出问题: 小明任意画了几个三角形,用量角器分别测量各三角形内角的度数,然后把三个角度加起来,发现每个三角形的内角的和都是180度,于是他就得出了一个一般性的结论:三角形的三个内角的和等于180度。 小颖对小明的做法提出了异议:你怎么知道你的结论一定可靠呢?三角形有无数个,你才测量了几个三角形?即使测量几千个、几万个,也只是很小的一部分,怎么能从这很小的一部分的性质推出所有三角形的性质呢?再说,你的测量不可能没有误差,你怎么能确定三角形的内角和正好是180度,而不是181度或179度呢? (二)设置问题,步步引导: 在数学学习中,我们可以通过实验、归纳、观察、猜测等方法,得到数学命题,你是否想过,通过这些方法得到的命题一定是真命题吗? (三)层层深入,挖掘特点: (1)当n=0,1,2,3,4时,代数式n2-n+11的值是质数还是合数?小明由此得出一个命题:对于所有自然数n,n2-n+11的值都是质数,你认为小明得出的命题是真命题吗?为什么? (2)小刚发现,……,由此得出一个命题:任何一个整数都大于它的倒数。你认为小刚得出的命题正确吗?为什么?与同伴进行交流。
tj