2021春苏教版数学五年级下册第一单元 简易方程
《方程》说课稿
大家好!今天我说课的是内容是苏教版小学数学五年级(下册)第一单元《方程》的第一课时。主要从教材、教法、学法和教学过程五个方面来说。
说教材
一、说教材分析及构思
本节知识,是在 “用字母表示数”的基础上编排的。方程是表示等量关系的一种模式,学习方程最重要的方面是能够根据具体问题中的数量关系,找出等量关系列出方程。
教材编排时,创设了多方面的问题情境,使学生通过对多个实例的讨论,发现了方程能刻画现实生活中的很多问题,从而体会到方程的作用,并产生积极的学习愿望。这对于学生学习方程起了重要的作用。所以,在设计预案时,基本遵从教材体系。
二、教学目标和重点、难点。
教学目标:
1 、知识目标:理解并掌握方程的意义,弄清方程与等式之间的关系。
2 、能力目标:正确地应用方程的意义辨别方程,帮助学生建立初步的分类思想。培养学生认真观察、思考的学习品质及抽象概括能力,在合作学习中增强学生的合作意识。
3 、情感目标:加强师生的情感交流,使学生在民主和谐的气氛中获取新知;渗透辩证唯物主义观点的启蒙教育。
教学重点:建立方程的概念。
教学难点:正确区分等式与方程的含义。
以上是根据新课标要求、教材特点和学生认识特征而确定的。
说教法
新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。
根据小学生的认知特点和规律及教材特点,这节课,我主要采用直观教学法、演示操作法、观察法等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:
1、用直观的操作和演示,让每位学生在动手操作的过程中理解和归结出结论。
2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。
3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。
说学法
为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。
让学生动眼观察,动手操作,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。
说教学过程
课堂教学是教学的主渠道,根据教学要求为实施教学计划突破教学的重、难点,我将教学过程分为以下四部分。
一、借助生活经验,感悟等量关系
展示天平图 师谈话引入:这是我们在科学课里用到的天平,它和大家玩过的跷跷板非常相似。当跷跷板平衡时,说明跷跷板两边人的体重有什么关系?(学生肯定会异口同声回答道:一样重)。那么如果我在天平的右边托盘里放一个300克的砝码,请你们在左边放你喜欢的东西,使天平平衡,你会放什么东西?
(学生自由说,师引导学生体会到只要放上的东西的质量是300克都行)。
接着展示教材例1天平图,老师提问:看看这幅图,谁能说一说这两种东西的质量关系?这样的教学设计不仅联系了生活实际,较好的激发学生学习兴趣。更重要的是使学生从自由放东西的过程中较自主的体会到等式的特征(左右两边相等)。
二、探究学习,发现方程
出示例2情境图
师问:第一张图天平往左边下垂说明什么?
(左边物体的质量大)
天平左边托盘里物体的质量可以怎么表示?右边的质量呢?怎样用数学算式表示天平两边物体质量的不相等关系?另外三个算式请同学们自己填写。
写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。
教学至此学生陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知材料。老师在这时及时指出方程的定义:像x+50=150、2x=200这样含有未知数的等式叫做方程,让学生理解x+50=150、2x=200的共同特点是“含有未知数”,而且也是“等式”。
这时为了使学生更深刻理解方程含义,老师让学生对两道例题里写出的其他算式不能称为方程的原因作出合理的解释。
在学生对方程含义有一定理解的基础上,老师让学生独立完成“练一练”第1题,让学生先找出等式,再找出方程,(实际我在这里暗示了学生找方程只要从等式当中去找就可以了)通过这样的提示学生就很容易理解等式与方程这两个概念之间的包含与被包含关系。
另外,这道题里有既以x又有以y为未知数的等式,使学生对“未知数”有正确的理解,防止把方程狭隘地理解为“含有x的等式”。
接着安排学生讨论“等式和方程有什么关系”,学生可能讨论出一下几个结论:⑴等式包含方程。⑵方程是特殊的等式。⑶含有未知数的等式是方程。⑷方程都是等式,但等式不都是方程。对于学