《综合应用(一)》教案
教学目标
知识与技能:
综合图文信息,根据数量关系,能够正确解决稍复杂的实际问题(主要是和关系的问题)。
过程与方法:
经历计算、比较、交流等过程,了解设计一个合理方案的一般步骤和常用策略。
情感态度价值观:
体会到数学分析可以帮助我们更有效地处理生活问题,增强学生学习数学的兴趣。
教学准备
多媒体课件(PPT)
教学重难点
(1)要注意把握它的数学味,尊重生活,但不应停留于生活经验;
(2)使学生充分去经历尝试解决——交流思路——比较优化的过程。
教学过程
(1)教学导入:
1、设问:今天,有一群三年级的朋友要去儿童公园春游,可是要怎么去呢?
有两位小朋友跟着老师去租车,大家开动脑筋想一想,他们在租车时需要考虑哪些问题?
主要思路:计算一共有多少人?
计算:124+12+34=170(人)
(2)展开
1、出示学习要求:
想一想,算一算,设计一个比较合理的租车方案。
2、师生共同参与
如果租A型车:170÷20=8(辆)……10(人)
需要租车9辆,需要付出租金350×9=3150(元)
如果租B型车:170÷50=3(辆)……20(人)
需要租车4辆,需要付出租金720×4=2880(元)
如果A型车和B型车一起租:170÷50=3(辆)……20(人),剩下20人刚好坐一辆A型车,需要3辆B型车,1辆A型车。应付租金:720×3+350=2510(元)
3、总结设计步骤
计算总人数
确定车型
计算租车辆数
计算租金
4、出示学习要求:可是,春游那天,又来了10个同学和10名家长,你能用刚才的方法重新设计一下租车方案吗?
解:方案1租A型车
190÷20=9(辆)…10(人)
10人再坐一辆车
需要10辆A型车,有空位10个
应付租金:
350×10=3500(元)
方案2租B型车
190÷50=3(辆)…40(人)
40人再坐一辆车
需要4辆B型车,有空位10个
应付租金:
720×4=2880(元)
方案3:A型车与B型车混租
190÷50=3(辆)…40(人)
40÷2=2(辆)
需要4辆B型车,2辆A型车
应付租金:
720×3+350×2=2860(元)
2860<2880<3500
故选择方案3。
(3)巩固与提高
1、这下好了,同学们高高兴兴地坐车来到公园。可是,去公园玩要门票呀,该怎样买票呢?请你设计几个购票方案吧!(要求学生独立完成)
2、谁来说说自己的方案?
方案
票价
人数
张数
金额
合计金额
1
成人票30元/张
46人
46张
1380元
3390元
儿童票15元/张
134人
134张
2010元
团体票20元/张
共170人
0张
2
成人票30元