13.1 命题、定理与证明
第二课时 定理与证明
教学目标
1.知识与技能:了解命题、公理、定理的含义;理解证明的必要性.
2.过程与方法: 结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.
3.情感、态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值.
重点与难点
1.重点:知道什么是公理,什么是定理
2.难点:理解证明的必要性.
教学过程
一、复习引入
教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.
二、探究新知
(一)公理
教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.
我们已经知道下列命题是真命题:
两点确定一条直线;
两点之间、线段最短;
过一点有且只有一条直线与已知直线垂直;
过直线外一点有且只有一条直线与这条直线平行;
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
在本书中我们将这些真命题均作为公理.
(二)定理
教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.
1、教师讲解:请大家看下面的例子:
当n=1时,(n2-5n+5)2=1;
当n=2时,(n2-5n+5)2=1;
当n=3时,(n2-5n+5)2=1.
我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?
实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.
2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2> b2.这个命题是真命题吗?
[答案:不正确,因为3> -5,但3 2 <(-5)2]
教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的