命题与证明
证明与反证法(2)
一.教学目标
1.使学生初步掌握反证法的概念及反证法证题的基本方法.
2.培养学生用反证法简单推理的技能,从而发展学生的思维能力.
重点:反证法证题的步骤.
难点:理解反证法的推理依据及方法.
教学方法讲练结合教学.
教学过程
一、提问:
1、通过预习我们知道反证法,什么叫做反证法?
从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法.
2、本节将进一步研究反证法证题的方法,反证法证题的步骤是什么?
共分三步:
(1)假设命题的结论不成立,即假设结论的反面成立;
(2)从假设出发,经过推理,得出矛盾;
(3)由矛盾判定假设不正确,从而肯定命题的结论正确.
反证法是一种间接证明命题的基本方法。在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。
二、探究
P57例题2 已知:∠A,∠B,∠C是△ABC的内角。
求证:∠A,∠B,∠C中至少有一个角大于或等于600
课本上这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确。象这样的证明方法叫做反证法。
三、应用新知
例1 在△ABC中,AB≠AC,求证:∠B ≠ ∠ C
证明:假设,∠B = ∠C,则AB=AC这与已知AB≠AC矛盾.假设不成立.
∴∠B ≠ ∠ C
小结: 反证法的步骤:
假设结论的反面不成立→逻辑推理得出矛盾→肯定原结论正确。
例2 已知:如图有a、b、c三条直线,且a//c,b//c. 求证:a//b
证明:假设a与b不平行,则可设它们相交于点A。那么过点A 就有两条直线a、b与直线c平行,这与“过直线外一点有且只有一条直线与已知直线平行矛盾,假设不成立。 ∴a//b.
小结:根据假设推出结论除了可以与已知条件矛盾以外,还可以与我们学过的定理、公理矛盾
四、练习
1、 求证:在一个三角形中,至少有一个内角小于或等于60°。
已知:△ABC , 求证:△ABC中至少有一个内角小于或等于60°
证明: 假设△ABC中没有一个内角小于或等于60°
则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+60°+60°=180°
即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾.假设不成立.
∴△ABC中至少有一个内角小于或等于60°
2、试证明:如果两条直线都与第三条直线平行,那么这两条直线也平行.(学生完成,教师引导)
已知: ;
求证: ;
证明:假设 ,则可设它们相交于点A。那么过点A 就有 条直线与直线c平行,这与“过直线外一点 ”。矛盾,则假设不成立。
∴ 。
五、课时小结
本节重点研究了反证法证题的一般步骤及反证法证明命题的应用。对于反证法的熟练掌握还需在今后随着学习的深入,逐步加强和提高。
六、课后作业:
P60 B组 9
七、板书设计
证明与反证法(2)
1.反证法证明命题的步骤。
2.反证法应用:例题