二元一次方程知识点
二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
代入消元法解二元一次方程组:
基本思路:未知数又多变少。
消元法的基本方法:将二元一次方程组转化为一元一次方程。
代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这个方法叫做代入消元法,简称代入法。
代入法解二元一次方程组的一般步骤:
从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”
将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
解出这个一元一次