《掷一掷》教学设计
教学内容:人教版小学数学五年级上册第50~51页“掷一掷”相关内容。
教材分析: 本节课是义务教育教科书人教版教材五年级上册第四单元后的一节综合实践活动内容。教材以连环画的形式展示活动的过程。从知识内容上看,整个活动分为以下三个层次:组合、事件的确定性与可能性、可能性的大小。从编排上看,教材充分考虑学生的认知特点,以游戏的形式探讨可能性的大小,引发学生探索现象背后奥秘的兴趣。在呈现教学内容和过程时,不但体现知识的形成过程,而且留给学生充分自主探索和交流的空间。
学情分析 :从认知规律上看,五年级学生的思维正处于从形象思维向抽象思维过渡期,喜欢动手操作,乐于探究;从知识储备上看,在前面的学习中,学生已经积累了简单的排列组合、统计、可能性等数学知识,具备一定的解决实际问题的能力,这些是进行综合应用活动的重要基础。同时,学习运用这部分知识也能为后面的等可能性、游戏规则的公平性等统计与概率知识奠定良好的基础。
教学目标:
1.运用已学过的组合、统计、可能性、找规律等有关知识,探讨事件发生的可能性大小,了解所学知识间的联系,体会数学知识在解决问题中的运用。
2.让学生在经历观察、猜想、实验、验证等活动过程中,提高提出问题、分析和解决问题的能力,以及合作交流能力,积累活动经验。
3.感受数学的价值,体验学习数学、应用数学的乐趣。
教学重点:探索两个骰子点数之和在5,6,7,8,9居多的道理。
教学难点:综合运用所学知识解决问题。
教学过程:
一、创设情境、生成问题
1.播放视频(我看你有戏),学生观看。
2.看完视频,有什么感受?
3.的确是高手。你们玩过骰子吗?谁能用数学的眼光来给大家介绍一下,一颗骰子中藏着哪些数学知识?如果掷一颗骰子,掷出的数可能是哪些?最小是几?最大是?
4. 看来这骰子中的确藏着不少的数学知识,这节课我们就一起来研究关于掷骰子的问题。(板书课题:掷一掷)
二、探索交流、解决问题
1.我们已经知道,掷一颗骰子,面朝上的点数只可能是1,2,3,4,5,6中的一个数字。谁来猜一猜:如果同时掷两颗骰子,得到面朝上的两个数的“和”可能有哪些? (板书2至12数字)
2.动手实践,验证猜想:同时掷两个骰子,每个同学掷几次,看看点数之和是不是在2~12之间?
3.提出问题:有掷出的两个数的和为1的吗? 13呢? 有可能掷出来吗?为什么?
4.小结。看来,在上面的所有“组合”中,最小的和是1+1=2,最大的和是6+6=12,所以,两个数的和是2,3,4,…,12都是可能发生的事件;但两个骰子的点数之和不可能是1或13,这是一个确定事件。
5.其实,老师也是一个玩骰子的高手。出道以来,几乎保持着不败的战绩。相信吗?(不信)那咱们不妨现场来一次掷骰子挑战赛。现在老师把可能出现的这11个和分成两组,(黑板上划分:A组5、6、7、8、9;B组:2、3、4、10、11、12)我吃点亏,选这边的五个数,你们选派一名代表来和我掷骰子,每人掷10次,如果掷出的两数之和在A组,算我赢;如果掷出的两数之和在B组,算你们赢。再找一名同学用画“正”字的方法作好记录,其他同学监督比赛情况。
6.统计后,宣布赢家。在刚才一轮的游戏中,老师赢得多,你们们赢得少,大家是不是不服气,认为还有很多同学没有掷,不能说明问题。那接下来继续掷,不过为了体现公平、满足大家的要求,这一次,我们每个人都动手轮流掷,全体学生参与。(课件出示规则:两人一组,轮流掷,和是多少就在1号学习单对应的数字上方涂一格。横线上的数字表示掷的“和”,竖线上的数字表示掷出的次数;涂满其中任意一列,比赛结束;观察实验统计结果,看看你有什么发现?)
7.汇报展示,谁来说说你发现了什么?
8.投影教师:观察实验统计结果,你们发现了什么? (掷出的和在靠近中间位置的次数多,而靠近两边的次数较少)
9.同意他们的发现吗?我刚才发现有一个小组12一次也没有掷出来,是不是说不可能掷出12?
10.那现在如果在掷一次,要想胜率大一些,你们选哪一组的和?为什么?
11. 通过动手掷一掷,同学们已经发现,掷出的点数之和是A组数的可能性大一些,为什么掷出和是5、6、7、8、9的可能性较大?这里面藏着什么奥妙呢?下面请大家以小组为单位,
交流讨论,完成2号学习单,并说说你的发现。
骰子点数
4
3
4
3
3
4
4
4
3
2
4
2
5
2
5
3
5
4
2
2
2
3
2