教学目标
1.理解比的意义,掌握比的读法和写法,认识比的各部分名称.
2.掌握求比值的方法,并能正确求出比的比值.
3.培养学生抽象、概括能力.
教学重点
理解比的意义,掌握求比值的方法.
教学难点
理解比的意义,建立比的概念.
教学过程
一、谈话引入
在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比.(板书:比的意义)
二、讲授新课
(一)教学例1
例1.一面红旗,长3分米,宽2分米.长是宽的几倍?宽是长的几分之几?板书:3÷2= = 2÷3=
1.3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?
2.2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?
3.小结
(1)长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几.
(2)3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比.
4.练习
有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?
(二)教学例2
例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?
1.求的是什么?谁除以谁?也就是谁和谁进行比较?
2.汽车行驶路程和时间的比是100比2表示什么?
3.思考:单价可以说成是谁和谁的比?
工作效率可以说成是谁和谁的比?
商可以说成是谁和谁的比?
4.小结
通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比.
(三)归纳总结
引导学生观察板书 ,什么叫比?
教师板书:两个数相除又叫做两个数的比.
(四)练习
1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是( ),柳树和杨树棵树的比是( )
2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是( ).
3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是( ),青菜和萝卜单价的比是( ).
(五)比的各部分名称和求比值的方法(演示课件“比的意义”)
1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.
例如: 3比2 记作:3∶2
2比3 记作:2∶3
100比2 记作:100∶2
2.“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.
板书:
3.提问:比的前项和后项能随便交换位置吗?为什么 ?
4.练习:求比值
教师说明:求比值不写单位名称.
(六)比、除法、分数之间的关系(演示课件“比、除法、分数的异同”)
1.教师提问
(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?
(2)为什么要用“相当于”这个词?能不能用“是”?
(3)在除法中,除数不能是零,那比的后项呢?
2.比的分数形式
(1)教师:比还有一种表示方法,就是分数形式.例如: