可能性总复习
教学目标:
1、使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。
2、使学生通过复习,进一步体会游戏规则的公平性,能判断简单游戏的规则是否公平,能设计简单的公平游戏规则。
3、使学生通过复习,进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性;培养简单推理的能力,增强学习数学的兴趣。
教学重难点:
教学重点:进一步明确可能性的含义
教学难点:准确用分数表示可能性的大小
教学过程:
一、创设情境,揭示课题
1.师:同学们,在你们面前的袋子里放了20个球。摸摸看,自己摸出的是什么颜色的球。要求每位同学从袋子里任意摸出一个球,放回袋中后,第二个同学接着摸,轮流进行,一共摸30次。小组记录员记下每次摸球的结果,看看最后哪种颜色的球摸出来的次数最多。
第一组:20个红球;第二组:20个黄球;第三组:10红10黄;第四组:17红3黄;第五组:3红17黄
学生动手操作,并在学习单上进行记录
问:下面请各组的小记录员们汇报一下,你们小组摸球的结果是怎样的?
根据摸球的结果,猜一猜每组袋中20个球是什么颜色?
验证猜想
师:大家的猜测是否正确呢?让我们把袋中的球倒入盒中验证一下。
追问:从哪几组袋中摸球的结果是确定的,哪几组袋中摸球的结果是不确定的?
小结:是呀,生活中一定发生或不可能发生的事件是确定性事件,可能发生的事件是不确定性事件,也就是随机事件。(板书:确定事件 不确定事件)
引入课题:今天我们就来一起复习可能性。(板书:可能性)
回顾思考,整理归纳
1、将分别标有数字1、2、3、4、5的5个小球放在一个盒子里。
(1)任意摸1个球,可能会摸到数字几?有几种可能性?
(2)根据你们的推测,下面几种情况是“不可能发生”,还是“一定发生”或“可能发生”?
球上的数是奇数;
球上的数小于6;
球上的数大于5;
球上的数不是5
(3) 任意摸1个球,球上的数是奇数的可能性大,还是偶数的可能性大?
小结:看来在随机事件中,有些事件发生的可能性并不相等,有大有小。
追问:可能性有大有小,我们怎样来描述摸到奇数和偶数的可能性大小吗?(口答)
除了可以用分数表示可能性的大小,还可以用什么数表示?(板书:分数或百分数)
(4) 师:现在老师再增加一个球,上面问题的答案有变化吗?
根据学生回答,课件演示
(5)师:学校要进行套圈比赛,体育老师决定摸到比3小的数甲先套,摸到比3大的数乙先套。用这种方法决定谁先套,公平吗?
学生讨论交流,说明理由。
问:为了游戏公平,你们想怎样更改游戏规则?
小结:只要使参加游戏的小朋友摸到指定的数的可能性大小相等,这样的游戏规则就是公平的。(板书:游戏公平)
2、练习:小芳和小娟做“石头、剪子、布”的游戏,游戏中可能出现的情况有多少种?先填写表格,再想一想,两人获胜的可能性相等吗?
(1)师:我发现不少同学平时喜欢玩“石头、剪刀、布”的游戏,谁愿意和老师一起玩?
(2)问:玩“石头、剪刀、布”可能会出现多少种情况?要想知道游戏过程中可能会出现多少种情况,怎么办呢?(一一列举)
(3)打开数学书第106页,学生填写表格
问:表格中是按什么顺序列举?(有序列举)这样列举有什么好处?
观察表格中各种不同结果,小组讨论两人获胜的可能性是否相等。
明确:在所有可能出现的结果中,游戏双方输、赢、平的次数相等,说明两人获胜的可能性相等。
3、回顾:你是怎样理解可能性的?在什么情况下事件发生的可能性是相等的,什么情况下不相等?
三、联系实际,巩固应用
1、出示:(某地的天气预报说:“明天的降水概率是80%。”根据这个预报,判断下面的说法是否正确。)
(1)指名读题。(投影出示)
(2)提问:你是怎样理解“明天的降水概率是80%”这句话的?
(3)学生按要求判断,并说明理由。
师:如果选明天下雨的可能性很小,天气预报可以说明天下雨