365文库
登录
注册
2

数学-人教B版-选修1-2-教学设计1:2.1 .1合情推理.doc-2.1.1 合情推理-第二章 推理与证明-教学设计.doc

291阅读 | 10收藏 | 4页 | 打印 | 举报 | 认领 | 下载提示 | 分享:
2
数学-人教B版-选修1-2-教学设计1:2.1 .1合情推理.doc-2.1.1 合情推理-第二章 推理与证明-教学设计.doc第1页
数学-人教B版-选修1-2-教学设计1:2.1 .1合情推理.doc-2.1.1 合情推理-第二章 推理与证明-教学设计.doc第2页
数学-人教B版-选修1-2-教学设计1:2.1 .1合情推理.doc-2.1.1 合情推理-第二章 推理与证明-教学设计.doc第3页
数学-人教B版-选修1-2-教学设计1:2.1 .1合情推理.doc-2.1.1 合情推理-第二章 推理与证明-教学设计.doc第4页
福利来袭,限时免费在线编辑
转Pdf
right
1/4
right
下载我编辑的
下载原始文档
收藏 收藏
搜索
下载二维码
App功能展示
海量免费资源 海量免费资源
文档在线修改 文档在线修改
图片转文字 图片转文字
限时免广告 限时免广告
多端同步存储 多端同步存储
格式轻松转换 格式轻松转换
用户头像
像你 上传于:2024-06-21
《合情推理》教学设计 ●教学重点:归纳推理及方法的总结。 ●教学难点:归纳推理的含义及其具体应用。 ●教具准备:与教材内容相关的资料。 ●课时安排:1课时 ●教学过程: 一.问题情境 (1)原理初探 ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!” ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在? ③探究:他是怎么发现“杠杆原理”的? 从而引入两则小典故:(图片展示-阿基米德的灵感) A:一个小孩,为何轻轻松松就能提起一大桶水? B:修筑河堤时,奴隶们是怎样搬运巨石的? 正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。 ④思考:整个过程对你有什么启发? ⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。 (2)皇冠明珠 追逐先辈的足迹,接触数学皇冠上最璀璨的明珠 — “歌德巴赫猜想”。 链接: 思考:其他偶数是否也有类似的规律? 讨论:组织学生进行交流、探讨。 检验2和4可以吗?为什么? 归纳:通过刚才的探究,有学生归纳“归纳推理”的定义及特点。 3.数学建构 ●把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳). 注:归纳推理的特点; 简言之,归纳推理是由部分到整体、由特殊到一般的推理。 ●归纳推理的一般步骤: 4.师生活动 例1 前提:蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇、鳄鱼、海龟、蜥蜴都是爬行动物. 结论:所有的爬行动物都是用肺呼吸的。 例2 前提:三角形的内角和是1800,凸四边形的内角和是3600,凸五边形的内角和是5400,…… 结论:凸n 边形的内角和是(n—2)×1800。 例  由此我们猜想:(,b,m均为实数) 探究:上述结论都成立吗? 强调:归纳推理的结果不一定成立! —— “ 一切皆有可能!” 5.提高巩固  ①探索:先让学生独立进行思考。  = 2 \* GB3 ②活动:“千里走单骑” — 鼓励学生说出自己的解题思路。  = 3 \* GB3 ③活动:“圆桌会议” — 鼓励其他同学给予评价,对在哪里?错在哪里?还有没有更好的方法? 【设计意图】:提供一个舞台, 让学生展示自己的才华,这将
tj